{"title":"利用竹子实质细胞制备具有排列整齐的石墨烯纳米片阵列的生物质活性炭,用于超级电容器","authors":"Yao Xia, Zhigao Liu, Yuxiang Huang","doi":"10.1515/hf-2024-0005","DOIUrl":null,"url":null,"abstract":"Abstract The increasing recognition of the need for economically viable carbon materials in supercapacitors has resulted in a notable emphasis on utilizing recycled biomass waste as a precursor for activated carbon (AC). This study investigates the production of highly porous AC through vertically aligned graphene nanosheet arrays (VAGNAs) derived from bamboo parenchyma cells, a type of biomass waste. The focus lies in manipulating the ratio of alkali to carbon during the activation process. Elevating the alkali-carbon ratio augments the specific surface area of the AC while concurrently reducing the presence of VAGNAs. Surprisingly, AC generated with an alkali-carbon ratio of four exhibits a remarkable specific capacitance of 215 F g−1 when subjected to a current density of 0.2 A g−1. When integrated into a supercapacitor apparatus, this AC material demonstrates a notable energy density of 11.2 W-hours per kilogram (Wh kg−1) at a power density of 50 W per kilogram (W kg−1). Moreover, it displays exceptional cycling stability, maintaining 89.4 % of its capacitance after undergoing 10,000 cycles in a 6 M potassium hydroxide electrolyte. The findings of this investigation underscore the potential of utilizing waste bamboo parenchyma cells for sustainable energy storage applications.","PeriodicalId":13083,"journal":{"name":"Holzforschung","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of biomass activated carbon with aligned graphene nanosheet arrays from bamboo parenchymal cells for supercapacitors\",\"authors\":\"Yao Xia, Zhigao Liu, Yuxiang Huang\",\"doi\":\"10.1515/hf-2024-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The increasing recognition of the need for economically viable carbon materials in supercapacitors has resulted in a notable emphasis on utilizing recycled biomass waste as a precursor for activated carbon (AC). This study investigates the production of highly porous AC through vertically aligned graphene nanosheet arrays (VAGNAs) derived from bamboo parenchyma cells, a type of biomass waste. The focus lies in manipulating the ratio of alkali to carbon during the activation process. Elevating the alkali-carbon ratio augments the specific surface area of the AC while concurrently reducing the presence of VAGNAs. Surprisingly, AC generated with an alkali-carbon ratio of four exhibits a remarkable specific capacitance of 215 F g−1 when subjected to a current density of 0.2 A g−1. When integrated into a supercapacitor apparatus, this AC material demonstrates a notable energy density of 11.2 W-hours per kilogram (Wh kg−1) at a power density of 50 W per kilogram (W kg−1). Moreover, it displays exceptional cycling stability, maintaining 89.4 % of its capacitance after undergoing 10,000 cycles in a 6 M potassium hydroxide electrolyte. The findings of this investigation underscore the potential of utilizing waste bamboo parenchyma cells for sustainable energy storage applications.\",\"PeriodicalId\":13083,\"journal\":{\"name\":\"Holzforschung\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Holzforschung\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/hf-2024-0005\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Holzforschung","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/hf-2024-0005","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
摘要
摘要 由于人们日益认识到超级电容器需要经济可行的碳材料,因此利用回收的生物质废物作为活性炭(AC)的前体受到了广泛重视。本研究探讨了通过垂直排列的石墨烯纳米片阵列(VAGNAs)生产高多孔活性炭的方法,该阵列来自竹子实质细胞(一种生物质废物)。研究重点在于活化过程中碱与碳的比例。提高碱碳比可增加 AC 的比表面积,同时减少 VAGNA 的存在。令人惊讶的是,当电流密度为 0.2 A g-1 时,碱碳比为 4 的交流电产生的比电容高达 215 F g-1。当这种交流电材料集成到超级电容器装置中时,在功率密度为每千克 50 瓦(W kg-1)时,其能量密度可达每千克 11.2 瓦时(Wh kg-1)。此外,它还显示出卓越的循环稳定性,在 6 M 氢氧化钾电解液中循环 10,000 次后仍能保持 89.4% 的电容。这项研究成果强调了利用废弃竹子实质细胞进行可持续能源储存应用的潜力。
Preparation of biomass activated carbon with aligned graphene nanosheet arrays from bamboo parenchymal cells for supercapacitors
Abstract The increasing recognition of the need for economically viable carbon materials in supercapacitors has resulted in a notable emphasis on utilizing recycled biomass waste as a precursor for activated carbon (AC). This study investigates the production of highly porous AC through vertically aligned graphene nanosheet arrays (VAGNAs) derived from bamboo parenchyma cells, a type of biomass waste. The focus lies in manipulating the ratio of alkali to carbon during the activation process. Elevating the alkali-carbon ratio augments the specific surface area of the AC while concurrently reducing the presence of VAGNAs. Surprisingly, AC generated with an alkali-carbon ratio of four exhibits a remarkable specific capacitance of 215 F g−1 when subjected to a current density of 0.2 A g−1. When integrated into a supercapacitor apparatus, this AC material demonstrates a notable energy density of 11.2 W-hours per kilogram (Wh kg−1) at a power density of 50 W per kilogram (W kg−1). Moreover, it displays exceptional cycling stability, maintaining 89.4 % of its capacitance after undergoing 10,000 cycles in a 6 M potassium hydroxide electrolyte. The findings of this investigation underscore the potential of utilizing waste bamboo parenchyma cells for sustainable energy storage applications.
期刊介绍:
Holzforschung is an international scholarly journal that publishes cutting-edge research on the biology, chemistry, physics and technology of wood and wood components. High quality papers about biotechnology and tree genetics are also welcome. Rated year after year as one of the top scientific journals in the category of Pulp and Paper (ISI Journal Citation Index), Holzforschung represents innovative, high quality basic and applied research. The German title reflects the journal''s origins in a long scientific tradition, but all articles are published in English to stimulate and promote cooperation between experts all over the world. Ahead-of-print publishing ensures fastest possible knowledge transfer.