基于流体/固体异质过程中固体分数转换的失活动力学模型比较研究

IF 1.7 4区 化学 Q4 CHEMISTRY, PHYSICAL Reaction Kinetics, Mechanisms and Catalysis Pub Date : 2024-06-07 DOI:10.1007/s11144-024-02638-6
Kye-Ryong Sin, Yong-Son Hong, Ju-Gyong Kim, Wi-Ryong Choe, Kwang-Song Kim, Yong-Man Jang
{"title":"基于流体/固体异质过程中固体分数转换的失活动力学模型比较研究","authors":"Kye-Ryong Sin,&nbsp;Yong-Son Hong,&nbsp;Ju-Gyong Kim,&nbsp;Wi-Ryong Choe,&nbsp;Kwang-Song Kim,&nbsp;Yong-Man Jang","doi":"10.1007/s11144-024-02638-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, the definition of deactivation kinetic model (DKM) has been given under some assumptions and its features were illustrated through comparison with prior kinetic models such as DM (deactivation model), Langmuir rate equation, pseudo kinetic model and unreacted SCM (shrinking core model). DKM is based on fractional conversion of solid and concentration of fluid phase, which is one of the different kinetic models for the heterogeneous processes. DKM has no thermodynamic equilibrium quantities such as adsorption amount (<i>q</i><sub><i>e</i></sub>) unlike the previous pseudo-order models. Therefore, DKM can offer more accurate kinetic parameters than other models. Main equations of DKM can be solved by using Matlab functions such as “ODE” and “lsqnonlin”. This DKM is a semi-empirical and apparent kinetic model for fluid/solid heterogeneous processes and its kinetic equations can be used not only in heterogeneous reactions, but also in adsorption processes.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":750,"journal":{"name":"Reaction Kinetics, Mechanisms and Catalysis","volume":"137 4","pages":"1967 - 1985"},"PeriodicalIF":1.7000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative study on a deactivation kinetic model based on fractional conversion of solid in fluid/solid heterogeneous processes\",\"authors\":\"Kye-Ryong Sin,&nbsp;Yong-Son Hong,&nbsp;Ju-Gyong Kim,&nbsp;Wi-Ryong Choe,&nbsp;Kwang-Song Kim,&nbsp;Yong-Man Jang\",\"doi\":\"10.1007/s11144-024-02638-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, the definition of deactivation kinetic model (DKM) has been given under some assumptions and its features were illustrated through comparison with prior kinetic models such as DM (deactivation model), Langmuir rate equation, pseudo kinetic model and unreacted SCM (shrinking core model). DKM is based on fractional conversion of solid and concentration of fluid phase, which is one of the different kinetic models for the heterogeneous processes. DKM has no thermodynamic equilibrium quantities such as adsorption amount (<i>q</i><sub><i>e</i></sub>) unlike the previous pseudo-order models. Therefore, DKM can offer more accurate kinetic parameters than other models. Main equations of DKM can be solved by using Matlab functions such as “ODE” and “lsqnonlin”. This DKM is a semi-empirical and apparent kinetic model for fluid/solid heterogeneous processes and its kinetic equations can be used not only in heterogeneous reactions, but also in adsorption processes.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":750,\"journal\":{\"name\":\"Reaction Kinetics, Mechanisms and Catalysis\",\"volume\":\"137 4\",\"pages\":\"1967 - 1985\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reaction Kinetics, Mechanisms and Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11144-024-02638-6\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Kinetics, Mechanisms and Catalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11144-024-02638-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究在一些假设条件下给出了去活化动力学模型(DKM)的定义,并通过与之前的动力学模型(如 DM(去活化模型)、朗缪尔速率方程、伪动力学模型和未反应 SCM(缩核模型))进行比较,说明了其特点。DKM 基于固体的分数转换和流体相的浓度,是异质过程的不同动力学模型之一。与之前的伪阶模型不同,DKM 没有吸附量(qe)等热力学平衡量。因此,与其他模型相比,DKM 可以提供更精确的动力学参数。DKM 的主要方程可使用 Matlab 函数(如 "ODE "和 "lsqnonlin")求解。该 DKM 是流体/固体异相过程的半经验和表观动力学模型,其动力学方程不仅可用于异相反应,还可用于吸附过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative study on a deactivation kinetic model based on fractional conversion of solid in fluid/solid heterogeneous processes

In this work, the definition of deactivation kinetic model (DKM) has been given under some assumptions and its features were illustrated through comparison with prior kinetic models such as DM (deactivation model), Langmuir rate equation, pseudo kinetic model and unreacted SCM (shrinking core model). DKM is based on fractional conversion of solid and concentration of fluid phase, which is one of the different kinetic models for the heterogeneous processes. DKM has no thermodynamic equilibrium quantities such as adsorption amount (qe) unlike the previous pseudo-order models. Therefore, DKM can offer more accurate kinetic parameters than other models. Main equations of DKM can be solved by using Matlab functions such as “ODE” and “lsqnonlin”. This DKM is a semi-empirical and apparent kinetic model for fluid/solid heterogeneous processes and its kinetic equations can be used not only in heterogeneous reactions, but also in adsorption processes.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
201
审稿时长
2.8 months
期刊介绍: Reaction Kinetics, Mechanisms and Catalysis is a medium for original contributions in the following fields: -kinetics of homogeneous reactions in gas, liquid and solid phase; -Homogeneous catalysis; -Heterogeneous catalysis; -Adsorption in heterogeneous catalysis; -Transport processes related to reaction kinetics and catalysis; -Preparation and study of catalysts; -Reactors and apparatus. Reaction Kinetics, Mechanisms and Catalysis was formerly published under the title Reaction Kinetics and Catalysis Letters.
期刊最新文献
Editorial. Special issue papers presented at the International Conference on Recent Trends in Materials and Devices 2023 Visible light active bismuth chromate/curcuma longa heterostructure for enhancing photocatalytic activity Influence of electron-donating groups on the aniline oxidative coupling reaction with promethazine: a comprehensive experimental and theoretical investigation Xanthan gum templated hydrothermal synthesis of Bi2O3 nano-photocatalyst for the mineralization of chlorophenols prevalent in paper pulp mill Innovative CO2 conversion: harnessing photocatalytic activity in polyvinylidene fluoride/TiO2 electrospun nanofibers for environmental sustainability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1