{"title":"基于时域信道脉冲响应重构的宽带卫星对地通信信噪比估计","authors":"Yuanfan Zhao, Cheng Ju, Dongdong Wang, Na Liu, Luyang Guan, Peng Xie","doi":"10.1002/sat.1527","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Signal-to-noise ratio (SNR) estimation is crucial for spectrum management and data transmission. However, the existing classical methods in satellite-to-ground (SG) communication links, particularly for broadband transmission and under ultra-low SNR conditions, often encounter substantial estimation errors. In this paper, a novel SNR estimation method based on time-domain channel impulse response (CIR) reconstruction is proposed. Least square (LS) algorithm in frequency domain and inverse fast Fourier transform (IFFT) with a rectangular window are employed to reconstructed CIR. The noise energy is calculated by computing the average energy outside the window. The signal power is obtained by subtracting the noise energy from the total energy inside the window. In addition, a numerical simulation with a signal bandwidth of 400 MHz is performed to evaluate the effectiveness of the proposed algorithm in real SG communication scenarios. The simulation results show that compared with existing classical methods, even under ultra-low SNR conditions, the proposed algorithm exhibits more accurate estimation ability and stronger resistance to frequency offset interference in nonterrestrial network (NTN) channels.</p>\n </div>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"42 5","pages":"415-422"},"PeriodicalIF":0.9000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Signal-to-noise ratio estimation for broadband satellite-to-ground communication based on time-domain channel impulse response reconstruction\",\"authors\":\"Yuanfan Zhao, Cheng Ju, Dongdong Wang, Na Liu, Luyang Guan, Peng Xie\",\"doi\":\"10.1002/sat.1527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Signal-to-noise ratio (SNR) estimation is crucial for spectrum management and data transmission. However, the existing classical methods in satellite-to-ground (SG) communication links, particularly for broadband transmission and under ultra-low SNR conditions, often encounter substantial estimation errors. In this paper, a novel SNR estimation method based on time-domain channel impulse response (CIR) reconstruction is proposed. Least square (LS) algorithm in frequency domain and inverse fast Fourier transform (IFFT) with a rectangular window are employed to reconstructed CIR. The noise energy is calculated by computing the average energy outside the window. The signal power is obtained by subtracting the noise energy from the total energy inside the window. In addition, a numerical simulation with a signal bandwidth of 400 MHz is performed to evaluate the effectiveness of the proposed algorithm in real SG communication scenarios. The simulation results show that compared with existing classical methods, even under ultra-low SNR conditions, the proposed algorithm exhibits more accurate estimation ability and stronger resistance to frequency offset interference in nonterrestrial network (NTN) channels.</p>\\n </div>\",\"PeriodicalId\":50289,\"journal\":{\"name\":\"International Journal of Satellite Communications and Networking\",\"volume\":\"42 5\",\"pages\":\"415-422\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Satellite Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/sat.1527\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Satellite Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/sat.1527","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Signal-to-noise ratio estimation for broadband satellite-to-ground communication based on time-domain channel impulse response reconstruction
Signal-to-noise ratio (SNR) estimation is crucial for spectrum management and data transmission. However, the existing classical methods in satellite-to-ground (SG) communication links, particularly for broadband transmission and under ultra-low SNR conditions, often encounter substantial estimation errors. In this paper, a novel SNR estimation method based on time-domain channel impulse response (CIR) reconstruction is proposed. Least square (LS) algorithm in frequency domain and inverse fast Fourier transform (IFFT) with a rectangular window are employed to reconstructed CIR. The noise energy is calculated by computing the average energy outside the window. The signal power is obtained by subtracting the noise energy from the total energy inside the window. In addition, a numerical simulation with a signal bandwidth of 400 MHz is performed to evaluate the effectiveness of the proposed algorithm in real SG communication scenarios. The simulation results show that compared with existing classical methods, even under ultra-low SNR conditions, the proposed algorithm exhibits more accurate estimation ability and stronger resistance to frequency offset interference in nonterrestrial network (NTN) channels.
期刊介绍:
The journal covers all aspects of the theory, practice and operation of satellite systems and networks. Papers must address some aspect of satellite systems or their applications. Topics covered include:
-Satellite communication and broadcast systems-
Satellite navigation and positioning systems-
Satellite networks and networking-
Hybrid systems-
Equipment-earth stations/terminals, payloads, launchers and components-
Description of new systems, operations and trials-
Planning and operations-
Performance analysis-
Interoperability-
Propagation and interference-
Enabling technologies-coding/modulation/signal processing, etc.-
Mobile/Broadcast/Navigation/fixed services-
Service provision, marketing, economics and business aspects-
Standards and regulation-
Network protocols