Jothi Vinoth Kumar, Duraisamy Karthika, V. Arul, K. Radhakrishnan, Pitcheri Rosaiah, Samar A. Aldossari, I. Neelakanta Reddy, Cheolho Bai
{"title":"白蚁翅膀衍生的 N 掺杂碳纳米点:在 Cu2+ 传感、荧光墨水和柔性聚合物薄膜中的应用","authors":"Jothi Vinoth Kumar, Duraisamy Karthika, V. Arul, K. Radhakrishnan, Pitcheri Rosaiah, Samar A. Aldossari, I. Neelakanta Reddy, Cheolho Bai","doi":"10.1007/s10971-024-06421-w","DOIUrl":null,"url":null,"abstract":"<div><p>This study used a simple hydrothermal approach to create nitrogen-doped carbon nanodots (TWNCNDs) from termite wings. The TWNCNDs have high fluorescence (FL) quality with a quantum yield of 11.8%. In order to detect Cu<sup>2+</sup> ions in aqueous circumstances selectively and sensitively, we made use of TWNCNDs by making use of the unusual optical features that they possessed. To evaluated the limit of detection (LOD) for TWNCNDs in the presence of metal ions by using the Stern-Volmer equation. The LOD for Cu<sup>2+</sup> ions was 0.1 μM, and the detection range was from 0 to 0.5 μM. We demonstrated their adaptability and potential for practical industrial usage beyond their applications in analytical chemistry by using the strong blue emission features of the synthesized TWNCNDs as effective fluorescent ink as marking agents and TWNCNDs/PVA polymeric films in a range of commercial anti-counterfeiting applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Termite wings derived N-doped carbon nanodots: applications for Cu2+ sensing, fluorescent ink and flexible polymeric film\",\"authors\":\"Jothi Vinoth Kumar, Duraisamy Karthika, V. Arul, K. Radhakrishnan, Pitcheri Rosaiah, Samar A. Aldossari, I. Neelakanta Reddy, Cheolho Bai\",\"doi\":\"10.1007/s10971-024-06421-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study used a simple hydrothermal approach to create nitrogen-doped carbon nanodots (TWNCNDs) from termite wings. The TWNCNDs have high fluorescence (FL) quality with a quantum yield of 11.8%. In order to detect Cu<sup>2+</sup> ions in aqueous circumstances selectively and sensitively, we made use of TWNCNDs by making use of the unusual optical features that they possessed. To evaluated the limit of detection (LOD) for TWNCNDs in the presence of metal ions by using the Stern-Volmer equation. The LOD for Cu<sup>2+</sup> ions was 0.1 μM, and the detection range was from 0 to 0.5 μM. We demonstrated their adaptability and potential for practical industrial usage beyond their applications in analytical chemistry by using the strong blue emission features of the synthesized TWNCNDs as effective fluorescent ink as marking agents and TWNCNDs/PVA polymeric films in a range of commercial anti-counterfeiting applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":664,\"journal\":{\"name\":\"Journal of Sol-Gel Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sol-Gel Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10971-024-06421-w\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-024-06421-w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Termite wings derived N-doped carbon nanodots: applications for Cu2+ sensing, fluorescent ink and flexible polymeric film
This study used a simple hydrothermal approach to create nitrogen-doped carbon nanodots (TWNCNDs) from termite wings. The TWNCNDs have high fluorescence (FL) quality with a quantum yield of 11.8%. In order to detect Cu2+ ions in aqueous circumstances selectively and sensitively, we made use of TWNCNDs by making use of the unusual optical features that they possessed. To evaluated the limit of detection (LOD) for TWNCNDs in the presence of metal ions by using the Stern-Volmer equation. The LOD for Cu2+ ions was 0.1 μM, and the detection range was from 0 to 0.5 μM. We demonstrated their adaptability and potential for practical industrial usage beyond their applications in analytical chemistry by using the strong blue emission features of the synthesized TWNCNDs as effective fluorescent ink as marking agents and TWNCNDs/PVA polymeric films in a range of commercial anti-counterfeiting applications.
期刊介绍:
The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.