{"title":"应变工程桥接双环二烯光电开关与下一代分子太阳能热储的竞赛","authors":"Akanksha Ashok Sangolkar, Rama Krishna Kadiyam, Ravinder Pawar","doi":"10.1002/cptc.202400089","DOIUrl":null,"url":null,"abstract":"<p>Norbornadiene/Quadricyclane (NBD/QC) is a prototypical bridged bicyclic diene (BBD)-based photoswitch that has been well-studied for molecular solar thermal energy storage (MOST). Inspired by the recent synthetically accessed BBDs, herein several photoswitches are rationally designed with modulated ring strain energies (RSE) in photoisomers to incorporate high energy storage density (ESD) and storage time in a single couple. The storage energy (<span></span><math></math>\n) calculated at DLPNO-CCSD(T)/Def2TZVP level is correlated with difference in RSE of two isomers (ΔRSE) whereas thermal back reaction (TBR) barrier calculated at (8,8)-CASPT2/6-311++G** shows correlation with RSE in metastable photoproduct. On the basis of these structure-property-RSE relationships, we recognized that two photoisomers need not to be highly strained. Instead, the RSE in the photoproduct and diene should be minimized while maintaining a large enthalpy difference between them to increase ESD and extend energy storage times in a single photoswitch. TBR barrier is governed by RSE in photoproduct and increasing strain in photoproduct may improve the <span></span><math></math>\n but at the cost of the TBR barrier. Herein, the structural skeletons are explored that holds promise to remarkably improve thermochemical properties relative to the unsubstituted BBD-based photoswitches reported so far. The BBD molecules with short saturated bridge length but elongated unsaturated bridges could bestow desirable thermochemical parameters and can be regarded as excellent candidates for MOST application. The work lays a theoretical foundation that guides to improve thermochemical properties <i>via</i> strain engineering of BBD-based photoswitches and opens a new avenue for designing principles and future experimental investigations of MOST systems.</p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"8 11","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strain Engineered Bridged Bicyclic Diene Photoswitches in the Race of Next-Generation Molecular Solar Thermal Energy Storage\",\"authors\":\"Akanksha Ashok Sangolkar, Rama Krishna Kadiyam, Ravinder Pawar\",\"doi\":\"10.1002/cptc.202400089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Norbornadiene/Quadricyclane (NBD/QC) is a prototypical bridged bicyclic diene (BBD)-based photoswitch that has been well-studied for molecular solar thermal energy storage (MOST). Inspired by the recent synthetically accessed BBDs, herein several photoswitches are rationally designed with modulated ring strain energies (RSE) in photoisomers to incorporate high energy storage density (ESD) and storage time in a single couple. The storage energy (<span></span><math></math>\\n) calculated at DLPNO-CCSD(T)/Def2TZVP level is correlated with difference in RSE of two isomers (ΔRSE) whereas thermal back reaction (TBR) barrier calculated at (8,8)-CASPT2/6-311++G** shows correlation with RSE in metastable photoproduct. On the basis of these structure-property-RSE relationships, we recognized that two photoisomers need not to be highly strained. Instead, the RSE in the photoproduct and diene should be minimized while maintaining a large enthalpy difference between them to increase ESD and extend energy storage times in a single photoswitch. TBR barrier is governed by RSE in photoproduct and increasing strain in photoproduct may improve the <span></span><math></math>\\n but at the cost of the TBR barrier. Herein, the structural skeletons are explored that holds promise to remarkably improve thermochemical properties relative to the unsubstituted BBD-based photoswitches reported so far. The BBD molecules with short saturated bridge length but elongated unsaturated bridges could bestow desirable thermochemical parameters and can be regarded as excellent candidates for MOST application. The work lays a theoretical foundation that guides to improve thermochemical properties <i>via</i> strain engineering of BBD-based photoswitches and opens a new avenue for designing principles and future experimental investigations of MOST systems.</p>\",\"PeriodicalId\":10108,\"journal\":{\"name\":\"ChemPhotoChem\",\"volume\":\"8 11\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemPhotoChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cptc.202400089\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPhotoChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cptc.202400089","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
降冰片二烯/四环烷(NBD/QC)是一种典型的桥接双环二烯(BBD)光开关,在分子太阳能热储能(MOST)方面已得到了深入研究。受合成获得的双环二烯的启发,本文合理地设计了几种具有调制环应变能(RSE)的光开关,从而在单个偶合中集成了高能量存储密度(ESD)和存储时间。在 DLPNO-CCSD(T)/Def2TZVP 水平上计算得到的存储能(〖ΔG〗^str)与两种异构体的 RSE 差异相关,而在(8,8)-CASPT2/6-311++G**水平上计算得到的热逆反应(TBR)势垒与光电产物中的 RSE 相关。这些结构-性质-RSE 关系说明,两种光异构体不需要高度应变。相反,应尽量减少光生成物和二烯中的 RSE,同时保持它们之间较大的焓差,以增加 ESD 并延长单个光开关的储能时间。与迄今报道的基于未取代 BBD 的光开关相比,本文探讨的结构骨架有望显著改善热化学特性。饱和桥较短而不饱和桥较长的光开关具有理想的热化学参数,可被视为优秀的 MOST 候选物质。这项研究为通过应变工程改善 BBD 基光电开关的热化学性质提供了指导,并为 MOST 系统的设计和未来实验研究开辟了一条新途径。
Strain Engineered Bridged Bicyclic Diene Photoswitches in the Race of Next-Generation Molecular Solar Thermal Energy Storage
Norbornadiene/Quadricyclane (NBD/QC) is a prototypical bridged bicyclic diene (BBD)-based photoswitch that has been well-studied for molecular solar thermal energy storage (MOST). Inspired by the recent synthetically accessed BBDs, herein several photoswitches are rationally designed with modulated ring strain energies (RSE) in photoisomers to incorporate high energy storage density (ESD) and storage time in a single couple. The storage energy (
) calculated at DLPNO-CCSD(T)/Def2TZVP level is correlated with difference in RSE of two isomers (ΔRSE) whereas thermal back reaction (TBR) barrier calculated at (8,8)-CASPT2/6-311++G** shows correlation with RSE in metastable photoproduct. On the basis of these structure-property-RSE relationships, we recognized that two photoisomers need not to be highly strained. Instead, the RSE in the photoproduct and diene should be minimized while maintaining a large enthalpy difference between them to increase ESD and extend energy storage times in a single photoswitch. TBR barrier is governed by RSE in photoproduct and increasing strain in photoproduct may improve the
but at the cost of the TBR barrier. Herein, the structural skeletons are explored that holds promise to remarkably improve thermochemical properties relative to the unsubstituted BBD-based photoswitches reported so far. The BBD molecules with short saturated bridge length but elongated unsaturated bridges could bestow desirable thermochemical parameters and can be regarded as excellent candidates for MOST application. The work lays a theoretical foundation that guides to improve thermochemical properties via strain engineering of BBD-based photoswitches and opens a new avenue for designing principles and future experimental investigations of MOST systems.