具有富氧空位的电纺纳米碳纤维支撑 V2O3 作为全钒基全功能电池的独立式高倍率阳极

IF 19.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Carbon Energy Pub Date : 2024-06-07 DOI:10.1002/cey2.517
Qi Lai, Bincen Yin, Yu Dou, Qing Zhang, Yunhai Zhu, Yingkui Yang
{"title":"具有富氧空位的电纺纳米碳纤维支撑 V2O3 作为全钒基全功能电池的独立式高倍率阳极","authors":"Qi Lai,&nbsp;Bincen Yin,&nbsp;Yu Dou,&nbsp;Qing Zhang,&nbsp;Yunhai Zhu,&nbsp;Yingkui Yang","doi":"10.1002/cey2.517","DOIUrl":null,"url":null,"abstract":"<p>Synergistic regulation of hierarchical nanostructures and defect engineering is effective in accelerating electron and ion transport for metal oxide electrodes. Herein, carbon nanofiber-supported V<sub>2</sub>O<sub>3</sub> with enriched oxygen vacancies (OV-V<sub>2</sub>O<sub>3</sub>@CNF) was fabricated using the facile electrospinning method, followed by thermal reduction. Differing from the traditional particles embedded within carbon nanofibers or irregularly distributed between carbon nanofibers, the free-standing OV-V<sub>2</sub>O<sub>3</sub>@CNF allows for V<sub>2</sub>O<sub>3</sub> nanosheets to grow vertically on one-dimensional (1D) carbon nanofibers, enabling abundant active sites, shortened ion diffusion pathway, continuous electron transport, and robust structural stability. Meanwhile, density functional theory calculations confirmed that the oxygen vacancies can promote intrinsic electron conductivity and reduce ion diffusion energy barrier. Consequently, the OV-V<sub>2</sub>O<sub>3</sub>@CNF anode delivers a large reversible capacity of 812 mAh g<sup>−1</sup> at 0.1 A g<sup>−1</sup>, superior rate capability (405 mAh g<sup>−1</sup> at 5 A g<sup>−1</sup>), and long cycle life (378 mAh g<sup>−1</sup> at 5 A g<sup>−1</sup> after 1000 cycles). Moreover, an all-vanadium full battery (V<sub>2</sub>O<sub>5</sub>//OV-V<sub>2</sub>O<sub>3</sub>@CNF) was assembled using an OV-V<sub>2</sub>O<sub>3</sub>@CNF anode and a V<sub>2</sub>O<sub>5</sub> cathode, which outputs a working voltage of 2.5 V with high energy density and power density, suggesting promising practical application. This work offers fresh perspectives on constructing hierarchical 1D nanofiber electrodes by combining defect engineering and electrospinning technology.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 9","pages":""},"PeriodicalIF":19.5000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.517","citationCount":"0","resultStr":"{\"title\":\"Electrospun carbon nanofiber-supported V2O3 with enriched oxygen vacancies as a free-standing high-rate anode for an all-vanadium-based full battery\",\"authors\":\"Qi Lai,&nbsp;Bincen Yin,&nbsp;Yu Dou,&nbsp;Qing Zhang,&nbsp;Yunhai Zhu,&nbsp;Yingkui Yang\",\"doi\":\"10.1002/cey2.517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Synergistic regulation of hierarchical nanostructures and defect engineering is effective in accelerating electron and ion transport for metal oxide electrodes. Herein, carbon nanofiber-supported V<sub>2</sub>O<sub>3</sub> with enriched oxygen vacancies (OV-V<sub>2</sub>O<sub>3</sub>@CNF) was fabricated using the facile electrospinning method, followed by thermal reduction. Differing from the traditional particles embedded within carbon nanofibers or irregularly distributed between carbon nanofibers, the free-standing OV-V<sub>2</sub>O<sub>3</sub>@CNF allows for V<sub>2</sub>O<sub>3</sub> nanosheets to grow vertically on one-dimensional (1D) carbon nanofibers, enabling abundant active sites, shortened ion diffusion pathway, continuous electron transport, and robust structural stability. Meanwhile, density functional theory calculations confirmed that the oxygen vacancies can promote intrinsic electron conductivity and reduce ion diffusion energy barrier. Consequently, the OV-V<sub>2</sub>O<sub>3</sub>@CNF anode delivers a large reversible capacity of 812 mAh g<sup>−1</sup> at 0.1 A g<sup>−1</sup>, superior rate capability (405 mAh g<sup>−1</sup> at 5 A g<sup>−1</sup>), and long cycle life (378 mAh g<sup>−1</sup> at 5 A g<sup>−1</sup> after 1000 cycles). Moreover, an all-vanadium full battery (V<sub>2</sub>O<sub>5</sub>//OV-V<sub>2</sub>O<sub>3</sub>@CNF) was assembled using an OV-V<sub>2</sub>O<sub>3</sub>@CNF anode and a V<sub>2</sub>O<sub>5</sub> cathode, which outputs a working voltage of 2.5 V with high energy density and power density, suggesting promising practical application. This work offers fresh perspectives on constructing hierarchical 1D nanofiber electrodes by combining defect engineering and electrospinning technology.</p>\",\"PeriodicalId\":33706,\"journal\":{\"name\":\"Carbon Energy\",\"volume\":\"6 9\",\"pages\":\"\"},\"PeriodicalIF\":19.5000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.517\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cey2.517\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.517","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

分层纳米结构和缺陷工程的协同调节可有效加速金属氧化物电极的电子和离子传输。本文采用简便的电纺丝方法,随后通过热还原法制备了富含氧空位的碳纳米纤维支撑 V2O3(OV-V2O3@CNF)。与传统的嵌入碳纳米纤维内部或不规则分布在碳纳米纤维之间的颗粒不同,独立的 OV-V2O3@CNF 使 V2O3 纳米片垂直生长在一维(1D)碳纳米纤维上,从而实现了丰富的活性位点、缩短的离子扩散路径、连续的电子传输和强大的结构稳定性。同时,密度泛函理论计算证实,氧空位可促进本征电子传导性并降低离子扩散能垒。因此,OV-V2O3@CNF 阳极在 0.1 A g-1 的条件下可实现 812 mAh g-1 的高可逆容量、卓越的速率能力(5 A g-1 时为 405 mAh g-1)和长循环寿命(1000 次循环后 5 A g-1 时为 378 mAh g-1)。此外,利用 OV-V2O3@CNF 阳极和 V2O5 阴极组装了全钒全电池(V2O5//OV-V2O3@CNF),可输出 2.5 V 的工作电压,具有高能量密度和功率密度,显示出良好的实际应用前景。这项工作为结合缺陷工程和电纺丝技术构建分层一维纳米纤维电极提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrospun carbon nanofiber-supported V2O3 with enriched oxygen vacancies as a free-standing high-rate anode for an all-vanadium-based full battery

Synergistic regulation of hierarchical nanostructures and defect engineering is effective in accelerating electron and ion transport for metal oxide electrodes. Herein, carbon nanofiber-supported V2O3 with enriched oxygen vacancies (OV-V2O3@CNF) was fabricated using the facile electrospinning method, followed by thermal reduction. Differing from the traditional particles embedded within carbon nanofibers or irregularly distributed between carbon nanofibers, the free-standing OV-V2O3@CNF allows for V2O3 nanosheets to grow vertically on one-dimensional (1D) carbon nanofibers, enabling abundant active sites, shortened ion diffusion pathway, continuous electron transport, and robust structural stability. Meanwhile, density functional theory calculations confirmed that the oxygen vacancies can promote intrinsic electron conductivity and reduce ion diffusion energy barrier. Consequently, the OV-V2O3@CNF anode delivers a large reversible capacity of 812 mAh g−1 at 0.1 A g−1, superior rate capability (405 mAh g−1 at 5 A g−1), and long cycle life (378 mAh g−1 at 5 A g−1 after 1000 cycles). Moreover, an all-vanadium full battery (V2O5//OV-V2O3@CNF) was assembled using an OV-V2O3@CNF anode and a V2O5 cathode, which outputs a working voltage of 2.5 V with high energy density and power density, suggesting promising practical application. This work offers fresh perspectives on constructing hierarchical 1D nanofiber electrodes by combining defect engineering and electrospinning technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Energy
Carbon Energy Multiple-
CiteScore
25.70
自引率
10.70%
发文量
116
审稿时长
4 weeks
期刊介绍: Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.
期刊最新文献
Issue Information Cover Image, Volume 6, Number 10, October 2024 Back Cover Image, Volume 6, Number 10, October 2024 Interface and doping engineering of V2C-MXene-based electrocatalysts for enhanced electrocatalysis of overall water splitting Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1