{"title":"带电液滴运动的先验估计:通过自由边界欧拉方程的动态方法","authors":"Vesa Julin, Domenico Angelo La Manna","doi":"10.1007/s00021-024-00883-2","DOIUrl":null,"url":null,"abstract":"<div><p>We study the motion of charged liquid drop in three dimensions where the equations of motions are given by the Euler equations with free boundary with an electric field. This is a well-known problem in physics going back to the famous work by Rayleigh. Due to experiments and numerical simulations one may expect the charged drop to form conical singularities called Taylor cones, which we interpret as singularities of the flow. In this paper, we study the well-posedness of the problem and regularity of the solution. Our main theorem is a criterion which roughly states that if the flow remains <span>\\(C^{1,\\alpha }\\)</span>-regular in shape and the velocity remains Lipschitz-continuous, then the flow remains smooth, i.e., <span>\\(C^\\infty \\)</span> in time and space, assuming that the initial data is smooth. Our main focus is on the regularity of the shape of the drop. Indeed, due to the appearance of Taylor cones, which are singularities with Lipschitz-regularity, we expect the <span>\\(C^{1,\\alpha }\\)</span>-regularity assumption to be optimal. We also quantify the <span>\\(C^\\infty \\)</span>-regularity via high order energy estimates which, in particular, implies the well-posedness of the problem.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"26 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00021-024-00883-2.pdf","citationCount":"0","resultStr":"{\"title\":\"A Priori Estimates for the Motion of Charged Liquid Drop: A Dynamic Approach via Free Boundary Euler Equations\",\"authors\":\"Vesa Julin, Domenico Angelo La Manna\",\"doi\":\"10.1007/s00021-024-00883-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the motion of charged liquid drop in three dimensions where the equations of motions are given by the Euler equations with free boundary with an electric field. This is a well-known problem in physics going back to the famous work by Rayleigh. Due to experiments and numerical simulations one may expect the charged drop to form conical singularities called Taylor cones, which we interpret as singularities of the flow. In this paper, we study the well-posedness of the problem and regularity of the solution. Our main theorem is a criterion which roughly states that if the flow remains <span>\\\\(C^{1,\\\\alpha }\\\\)</span>-regular in shape and the velocity remains Lipschitz-continuous, then the flow remains smooth, i.e., <span>\\\\(C^\\\\infty \\\\)</span> in time and space, assuming that the initial data is smooth. Our main focus is on the regularity of the shape of the drop. Indeed, due to the appearance of Taylor cones, which are singularities with Lipschitz-regularity, we expect the <span>\\\\(C^{1,\\\\alpha }\\\\)</span>-regularity assumption to be optimal. We also quantify the <span>\\\\(C^\\\\infty \\\\)</span>-regularity via high order energy estimates which, in particular, implies the well-posedness of the problem.</p></div>\",\"PeriodicalId\":649,\"journal\":{\"name\":\"Journal of Mathematical Fluid Mechanics\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00021-024-00883-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Fluid Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-024-00883-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-024-00883-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A Priori Estimates for the Motion of Charged Liquid Drop: A Dynamic Approach via Free Boundary Euler Equations
We study the motion of charged liquid drop in three dimensions where the equations of motions are given by the Euler equations with free boundary with an electric field. This is a well-known problem in physics going back to the famous work by Rayleigh. Due to experiments and numerical simulations one may expect the charged drop to form conical singularities called Taylor cones, which we interpret as singularities of the flow. In this paper, we study the well-posedness of the problem and regularity of the solution. Our main theorem is a criterion which roughly states that if the flow remains \(C^{1,\alpha }\)-regular in shape and the velocity remains Lipschitz-continuous, then the flow remains smooth, i.e., \(C^\infty \) in time and space, assuming that the initial data is smooth. Our main focus is on the regularity of the shape of the drop. Indeed, due to the appearance of Taylor cones, which are singularities with Lipschitz-regularity, we expect the \(C^{1,\alpha }\)-regularity assumption to be optimal. We also quantify the \(C^\infty \)-regularity via high order energy estimates which, in particular, implies the well-posedness of the problem.
期刊介绍:
The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.