José M. Campos-Salazar, Ariel Viani-Abad, Rodrigo Sandoval-García
{"title":"d-q 框架内单相线性多绕组变压器的建模与仿真","authors":"José M. Campos-Salazar, Ariel Viani-Abad, Rodrigo Sandoval-García","doi":"10.37256/jeee.3120244530","DOIUrl":null,"url":null,"abstract":"Exploring the fundamental principles of system modeling in electrical engineering, this study delves into the transformative power of the d-q transformation, highlighting its pivotal role in rendering time-varying systems into a coherent steady-state representation. Departing from conventional approaches, the study navigates the complexities of single-phase transformer configurations, utilizing the Clarke and Park transformations to seamlessly transition between electrical coordinates and the d-q frame. Through extensive derivations, dynamic equations are formulated in both α-β and d-q coordinates, providing a detailed understanding of system dynamics under specific loads. In addition, the study extends the analysis to a generalized multi-winding transformer model that accommodates a wide range of transformer setups. With detailed mathematical derivations, insightful visual aids, and clear state-space representations, this work attempt to be a resource for researchers seeking to unravel the intricacies of electrical system modeling and analysis.","PeriodicalId":518396,"journal":{"name":"Journal of Electronics and Electrical Engineering","volume":"15 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and Simulation of a Single-Phase Linear Multi-Winding Transformer in the d-q Frame\",\"authors\":\"José M. Campos-Salazar, Ariel Viani-Abad, Rodrigo Sandoval-García\",\"doi\":\"10.37256/jeee.3120244530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exploring the fundamental principles of system modeling in electrical engineering, this study delves into the transformative power of the d-q transformation, highlighting its pivotal role in rendering time-varying systems into a coherent steady-state representation. Departing from conventional approaches, the study navigates the complexities of single-phase transformer configurations, utilizing the Clarke and Park transformations to seamlessly transition between electrical coordinates and the d-q frame. Through extensive derivations, dynamic equations are formulated in both α-β and d-q coordinates, providing a detailed understanding of system dynamics under specific loads. In addition, the study extends the analysis to a generalized multi-winding transformer model that accommodates a wide range of transformer setups. With detailed mathematical derivations, insightful visual aids, and clear state-space representations, this work attempt to be a resource for researchers seeking to unravel the intricacies of electrical system modeling and analysis.\",\"PeriodicalId\":518396,\"journal\":{\"name\":\"Journal of Electronics and Electrical Engineering\",\"volume\":\"15 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronics and Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37256/jeee.3120244530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronics and Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/jeee.3120244530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling and Simulation of a Single-Phase Linear Multi-Winding Transformer in the d-q Frame
Exploring the fundamental principles of system modeling in electrical engineering, this study delves into the transformative power of the d-q transformation, highlighting its pivotal role in rendering time-varying systems into a coherent steady-state representation. Departing from conventional approaches, the study navigates the complexities of single-phase transformer configurations, utilizing the Clarke and Park transformations to seamlessly transition between electrical coordinates and the d-q frame. Through extensive derivations, dynamic equations are formulated in both α-β and d-q coordinates, providing a detailed understanding of system dynamics under specific loads. In addition, the study extends the analysis to a generalized multi-winding transformer model that accommodates a wide range of transformer setups. With detailed mathematical derivations, insightful visual aids, and clear state-space representations, this work attempt to be a resource for researchers seeking to unravel the intricacies of electrical system modeling and analysis.