通过整合转录组减缩策略识别在人类肝星状细胞活化过程中发挥特殊作用的人类 lncRNAs

IF 3.6 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Non-Coding RNA Pub Date : 2024-06-06 DOI:10.3390/ncrna10030034
Yonghe Ma, Jamie Harris, Ping Li, Chengfei Jiang, Hang Sun, Haiming Cao
{"title":"通过整合转录组减缩策略识别在人类肝星状细胞活化过程中发挥特殊作用的人类 lncRNAs","authors":"Yonghe Ma, Jamie Harris, Ping Li, Chengfei Jiang, Hang Sun, Haiming Cao","doi":"10.3390/ncrna10030034","DOIUrl":null,"url":null,"abstract":"Fibrotic liver features excessive deposition of extracellular matrix (ECM), primarily produced from “activated” hepatic stellate cells (HSCs). While targeting human HSCs (hHSCs) in fibrosis therapeutics shows promise, the overall understanding of hHSC activation remains limited, in part because it is very challenging to define the role of human long non-coding RNAs (lncRNAs) in hHSC activation. To address this challenge, we identified another cell type that acts via a diverse gene network to promote fibrogenesis. Then, we identified the lncRNAs that were differentially regulated in activated hHSCs and the other profibrotic cell. Next, we conducted concurrent analysis to identify those lncRNAs that were specifically involved in fibrogenesis. We tested and confirmed that transdifferentiation of vascular smooth muscle cells (VSMCs) represents such a process. By overlapping TGFβ-regulated lncRNAs in multiple sets of hHSCs and VSMCs, we identified a highly selected list of lncRNA candidates that could specifically play a role in hHSC activation. We experimentally characterized one human lncRNA, named CARMN, which was significantly regulated by TGFβ in all conditions above. CARMN knockdown significantly reduced the expression levels of a panel of marker genes for hHSC activation, as well as the levels of ECM deposition and hHSC migration. Conversely, gain of function of CARMN using CRISPR activation (CRISPR-a) yielded the completely opposite effects. Taken together, our work addresses a bottleneck in identifying human lncRNAs that specifically play a role in hHSC activation and provides a framework to effectively select human lncRNAs with significant pathophysiological role.","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Integrative Transcriptome Subtraction Strategy to Identify Human lncRNAs That Specifically Play a Role in Activation of Human Hepatic Stellate Cells\",\"authors\":\"Yonghe Ma, Jamie Harris, Ping Li, Chengfei Jiang, Hang Sun, Haiming Cao\",\"doi\":\"10.3390/ncrna10030034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fibrotic liver features excessive deposition of extracellular matrix (ECM), primarily produced from “activated” hepatic stellate cells (HSCs). While targeting human HSCs (hHSCs) in fibrosis therapeutics shows promise, the overall understanding of hHSC activation remains limited, in part because it is very challenging to define the role of human long non-coding RNAs (lncRNAs) in hHSC activation. To address this challenge, we identified another cell type that acts via a diverse gene network to promote fibrogenesis. Then, we identified the lncRNAs that were differentially regulated in activated hHSCs and the other profibrotic cell. Next, we conducted concurrent analysis to identify those lncRNAs that were specifically involved in fibrogenesis. We tested and confirmed that transdifferentiation of vascular smooth muscle cells (VSMCs) represents such a process. By overlapping TGFβ-regulated lncRNAs in multiple sets of hHSCs and VSMCs, we identified a highly selected list of lncRNA candidates that could specifically play a role in hHSC activation. We experimentally characterized one human lncRNA, named CARMN, which was significantly regulated by TGFβ in all conditions above. CARMN knockdown significantly reduced the expression levels of a panel of marker genes for hHSC activation, as well as the levels of ECM deposition and hHSC migration. Conversely, gain of function of CARMN using CRISPR activation (CRISPR-a) yielded the completely opposite effects. Taken together, our work addresses a bottleneck in identifying human lncRNAs that specifically play a role in hHSC activation and provides a framework to effectively select human lncRNAs with significant pathophysiological role.\",\"PeriodicalId\":19271,\"journal\":{\"name\":\"Non-Coding RNA\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Non-Coding RNA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ncrna10030034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-Coding RNA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ncrna10030034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

纤维化肝脏的特点是细胞外基质(ECM)过度沉积,主要由 "活化的 "肝星状细胞(HSCs)产生。虽然在纤维化治疗中以人类造血干细胞(hHSCs)为靶点显示出前景,但人们对hHSC活化的总体了解仍然有限,部分原因是确定人类长非编码RNAs(lncRNAs)在hHSC活化中的作用非常具有挑战性。为了应对这一挑战,我们确定了另一种通过多样化基因网络促进纤维形成的细胞类型。然后,我们确定了在活化的 hHSCs 和另一种促纤维化细胞中存在差异调控的 lncRNA。接下来,我们进行了并发分析,以确定哪些lncRNA特异性地参与了纤维形成。我们测试并证实了血管平滑肌细胞(VSMC)的转分化就是这样一个过程。通过在多组造血干细胞和血管平滑肌细胞中重叠TGFβ调控的lncRNA,我们确定了一份高度精选的lncRNA候选清单,这些lncRNA可能在造血干细胞活化过程中发挥特异性作用。我们通过实验鉴定了一个名为CARMN的人类lncRNA,它在上述所有条件下都受到TGFβ的显著调控。CARMN基因敲除可明显降低造血干细胞活化标志基因的表达水平,以及ECM沉积和造血干细胞迁移的水平。相反,使用 CRISPR 激活(CRISPR-a)获得 CARMN 的功能则会产生完全相反的效果。综上所述,我们的工作解决了在鉴定人类lncRNA方面的一个瓶颈问题,这些lncRNA在造血干细胞活化中发挥着特异性作用,我们的工作还为有效选择具有重要病理生理作用的人类lncRNA提供了一个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Integrative Transcriptome Subtraction Strategy to Identify Human lncRNAs That Specifically Play a Role in Activation of Human Hepatic Stellate Cells
Fibrotic liver features excessive deposition of extracellular matrix (ECM), primarily produced from “activated” hepatic stellate cells (HSCs). While targeting human HSCs (hHSCs) in fibrosis therapeutics shows promise, the overall understanding of hHSC activation remains limited, in part because it is very challenging to define the role of human long non-coding RNAs (lncRNAs) in hHSC activation. To address this challenge, we identified another cell type that acts via a diverse gene network to promote fibrogenesis. Then, we identified the lncRNAs that were differentially regulated in activated hHSCs and the other profibrotic cell. Next, we conducted concurrent analysis to identify those lncRNAs that were specifically involved in fibrogenesis. We tested and confirmed that transdifferentiation of vascular smooth muscle cells (VSMCs) represents such a process. By overlapping TGFβ-regulated lncRNAs in multiple sets of hHSCs and VSMCs, we identified a highly selected list of lncRNA candidates that could specifically play a role in hHSC activation. We experimentally characterized one human lncRNA, named CARMN, which was significantly regulated by TGFβ in all conditions above. CARMN knockdown significantly reduced the expression levels of a panel of marker genes for hHSC activation, as well as the levels of ECM deposition and hHSC migration. Conversely, gain of function of CARMN using CRISPR activation (CRISPR-a) yielded the completely opposite effects. Taken together, our work addresses a bottleneck in identifying human lncRNAs that specifically play a role in hHSC activation and provides a framework to effectively select human lncRNAs with significant pathophysiological role.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Non-Coding RNA
Non-Coding RNA Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
6.70
自引率
4.70%
发文量
74
审稿时长
10 weeks
期刊介绍: Functional studies dealing with identification, structure-function relationships or biological activity of: small regulatory RNAs (miRNAs, siRNAs and piRNAs) associated with the RNA interference pathway small nuclear RNAs, small nucleolar and tRNAs derived small RNAs other types of small RNAs, such as those associated with splice junctions and transcription start sites long non-coding RNAs, including antisense RNAs, long ''intergenic'' RNAs, intronic RNAs and ''enhancer'' RNAs other classes of RNAs such as vault RNAs, scaRNAs, circular RNAs, 7SL RNAs, telomeric and centromeric RNAs regulatory functions of mRNAs and UTR-derived RNAs catalytic and allosteric (riboswitch) RNAs viral, transposon and repeat-derived RNAs bacterial regulatory RNAs, including CRISPR RNAS Analysis of RNA processing, RNA binding proteins, RNA signaling and RNA interaction pathways: DICER AGO, PIWI and PIWI-like proteins other classes of RNA binding and RNA transport proteins RNA interactions with chromatin-modifying complexes RNA interactions with DNA and other RNAs the role of RNA in the formation and function of specialized subnuclear organelles and other aspects of cell biology intercellular and intergenerational RNA signaling RNA processing structure-function relationships in RNA complexes RNA analyses, informatics, tools and technologies: transcriptomic analyses and technologies development of tools and technologies for RNA biology and therapeutics Translational studies involving long and short non-coding RNAs: identification of biomarkers development of new therapies involving microRNAs and other ncRNAs clinical studies involving microRNAs and other ncRNAs.
期刊最新文献
Cardiomyopathies: The Role of Non-Coding RNAs. MicroRNA Biogenesis, Gene Regulation Mechanisms, and Availability in Foods. Interplay of microRNAs and circRNAs in Epithelial Ovarian Cancer. Non-Coding RNA as a Biomarker in Lung Cancer. Back to the Origin: Mechanisms of circRNA-Directed Regulation of Host Genes in Human Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1