利用遗传算法优化并行编译技术

Lin Han, Pengyan Yan
{"title":"利用遗传算法优化并行编译技术","authors":"Lin Han, Pengyan Yan","doi":"10.1117/12.3031912","DOIUrl":null,"url":null,"abstract":"This paper addresses the issue of low parallel efficiency resulting from fixed thread allocation in automatic parallelization compilation technology. The authors employ a genetic algorithm to determine the optimal number of threads for individual parallelizable loops. They then utilize iterative compilation techniques to produce the suitable number of threads for each parallelizable loop structure, thereby enhancing the efficiency of automatic parallelization compilation. The proposed method demonstrated an average performance enhancement of 26% across ten benchmarks in the SPEC CPU2006 test suite and an overall performance improvement of 3.7% in the NPB3.4.2 test suite, thereby indicating the viability and efficacy of the approach. The approach outlined in this paper can be utilized as a benchmark for enhancing the effectiveness of automated parallel computing and promoting the progression of automated parallel computing technology.","PeriodicalId":198425,"journal":{"name":"Other Conferences","volume":"107 9","pages":"131751F - 131751F-10"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of parallel compilation techniques using genetic algorithms\",\"authors\":\"Lin Han, Pengyan Yan\",\"doi\":\"10.1117/12.3031912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the issue of low parallel efficiency resulting from fixed thread allocation in automatic parallelization compilation technology. The authors employ a genetic algorithm to determine the optimal number of threads for individual parallelizable loops. They then utilize iterative compilation techniques to produce the suitable number of threads for each parallelizable loop structure, thereby enhancing the efficiency of automatic parallelization compilation. The proposed method demonstrated an average performance enhancement of 26% across ten benchmarks in the SPEC CPU2006 test suite and an overall performance improvement of 3.7% in the NPB3.4.2 test suite, thereby indicating the viability and efficacy of the approach. The approach outlined in this paper can be utilized as a benchmark for enhancing the effectiveness of automated parallel computing and promoting the progression of automated parallel computing technology.\",\"PeriodicalId\":198425,\"journal\":{\"name\":\"Other Conferences\",\"volume\":\"107 9\",\"pages\":\"131751F - 131751F-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Other Conferences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3031912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Other Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3031912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了自动并行化编译技术中固定线程分配导致并行效率低的问题。作者采用遗传算法来确定单个可并行循环的最佳线程数。然后,他们利用迭代编译技术为每个可并行循环结构生成合适的线程数,从而提高了自动并行化编译的效率。所提出的方法在 SPEC CPU2006 测试套件的十个基准中平均提高了 26% 的性能,在 NPB3.4.2 测试套件中总体性能提高了 3.7%,从而表明了该方法的可行性和有效性。本文概述的方法可作为提高自动并行计算效率和促进自动并行计算技术发展的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of parallel compilation techniques using genetic algorithms
This paper addresses the issue of low parallel efficiency resulting from fixed thread allocation in automatic parallelization compilation technology. The authors employ a genetic algorithm to determine the optimal number of threads for individual parallelizable loops. They then utilize iterative compilation techniques to produce the suitable number of threads for each parallelizable loop structure, thereby enhancing the efficiency of automatic parallelization compilation. The proposed method demonstrated an average performance enhancement of 26% across ten benchmarks in the SPEC CPU2006 test suite and an overall performance improvement of 3.7% in the NPB3.4.2 test suite, thereby indicating the viability and efficacy of the approach. The approach outlined in this paper can be utilized as a benchmark for enhancing the effectiveness of automated parallel computing and promoting the progression of automated parallel computing technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Small data in model calibration for optical tissue phantom validation New approaches of supersmooth surfaces diagnostics by using carbon nanoparticles Uses of 3D printing technologies in opto-mechanics and opto-mechatronics for laboratory instruments Integrated approach to precision instrumentation: design, modeling, and experimental validation of a compliant mechanical amplifier for laser scalpel prototype Laser-induced periodic surface structures on TiAl6V4 surfaces by picosecond laser processing for dental abutments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1