{"title":"通过界面膜-阴离子交联提高阴离子交换膜电解水电池的耐用性","authors":"Yerim Lee, Wooseok Lee, Tae-Hyun Kim","doi":"10.1002/bkcs.12881","DOIUrl":null,"url":null,"abstract":"<p>Research into enhancing the performance and durability of anion exchange membrane (AEM)-based water electrolysis (AEMWE) cells has primarily aimed to facilitate commercialization efforts and improve the chemical stability of AEMs, with anion exchange ionomers (AEIs) playing an increasingly important role. This study aimed to reduce ionomer swelling and enhance AEM–catalyst adhesion via AEM–ionomer crosslinking within a membrane electrode assembly (MEA), using allyl- and quaternary ammonium-functionalized poly(phenylene oxide) (PPO), allyl-m-PPO, as both the AEM and AEI. Bis(aryl azide) was added as a crosslinker to an ionomer solution to generate the MEA, which was heated to induce allyl–azide crosslinks at the membrane–ionomer interface. Peel test indicated an increased adhesion at both electrodes for the crosslinked x-allyl-0.05-PPO (5 mol% allyl content relative to the total ion-conducting head group content). Further, x-allyl-0.05-PPO exhibited a smaller voltage increase due to crosslinking compared to TA-PPO, signifying a notable improvement in durability.</p>","PeriodicalId":54252,"journal":{"name":"Bulletin of the Korean Chemical Society","volume":"45 7","pages":"620-630"},"PeriodicalIF":1.7000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bkcs.12881","citationCount":"0","resultStr":"{\"title\":\"Enhancing the durability of anion exchange membrane water electrolysis cells via interfacial membrane–ionomer crosslinking\",\"authors\":\"Yerim Lee, Wooseok Lee, Tae-Hyun Kim\",\"doi\":\"10.1002/bkcs.12881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Research into enhancing the performance and durability of anion exchange membrane (AEM)-based water electrolysis (AEMWE) cells has primarily aimed to facilitate commercialization efforts and improve the chemical stability of AEMs, with anion exchange ionomers (AEIs) playing an increasingly important role. This study aimed to reduce ionomer swelling and enhance AEM–catalyst adhesion via AEM–ionomer crosslinking within a membrane electrode assembly (MEA), using allyl- and quaternary ammonium-functionalized poly(phenylene oxide) (PPO), allyl-m-PPO, as both the AEM and AEI. Bis(aryl azide) was added as a crosslinker to an ionomer solution to generate the MEA, which was heated to induce allyl–azide crosslinks at the membrane–ionomer interface. Peel test indicated an increased adhesion at both electrodes for the crosslinked x-allyl-0.05-PPO (5 mol% allyl content relative to the total ion-conducting head group content). Further, x-allyl-0.05-PPO exhibited a smaller voltage increase due to crosslinking compared to TA-PPO, signifying a notable improvement in durability.</p>\",\"PeriodicalId\":54252,\"journal\":{\"name\":\"Bulletin of the Korean Chemical Society\",\"volume\":\"45 7\",\"pages\":\"620-630\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bkcs.12881\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Korean Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bkcs.12881\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Korean Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bkcs.12881","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancing the durability of anion exchange membrane water electrolysis cells via interfacial membrane–ionomer crosslinking
Research into enhancing the performance and durability of anion exchange membrane (AEM)-based water electrolysis (AEMWE) cells has primarily aimed to facilitate commercialization efforts and improve the chemical stability of AEMs, with anion exchange ionomers (AEIs) playing an increasingly important role. This study aimed to reduce ionomer swelling and enhance AEM–catalyst adhesion via AEM–ionomer crosslinking within a membrane electrode assembly (MEA), using allyl- and quaternary ammonium-functionalized poly(phenylene oxide) (PPO), allyl-m-PPO, as both the AEM and AEI. Bis(aryl azide) was added as a crosslinker to an ionomer solution to generate the MEA, which was heated to induce allyl–azide crosslinks at the membrane–ionomer interface. Peel test indicated an increased adhesion at both electrodes for the crosslinked x-allyl-0.05-PPO (5 mol% allyl content relative to the total ion-conducting head group content). Further, x-allyl-0.05-PPO exhibited a smaller voltage increase due to crosslinking compared to TA-PPO, signifying a notable improvement in durability.
期刊介绍:
The Bulletin of the Korean Chemical Society is an official research journal of the Korean Chemical Society. It was founded in 1980 and reaches out to the chemical community worldwide. It is strictly peer-reviewed and welcomes Accounts, Communications, Articles, and Notes written in English. The scope of the journal covers all major areas of chemistry: analytical chemistry, electrochemistry, industrial chemistry, inorganic chemistry, life-science chemistry, macromolecular chemistry, organic synthesis, non-synthetic organic chemistry, physical chemistry, and materials chemistry.