水介质中噁嗪 750 染料的振子光谱:计算研究

S. Leontieva
{"title":"水介质中噁嗪 750 染料的振子光谱:计算研究","authors":"S. Leontieva","doi":"10.29039/rusjbpc.2023.0643","DOIUrl":null,"url":null,"abstract":"The MN12SX/6-31++G(d,p)/SMD theory level exactly reproduced both positions of the main maximum and short-wavelength shoulder of OX750 absorption in an aqueous solution. The optimal functional for calculating the vibronic absorption spectra of different oxazine dyes in an aqueous solution was discussed based on the author’s present and previous studies. The absorption spectrum shoulder is caused by the vibronic transition. The vibrations involved in vibronic transitions correspond to large-scale molecular movements, are low-frequency, and very weak compared to the others. However, excitation significantly influences the vibrations including the most intensive ones. Photoinduced charge redistribution is local and there is no charge transfer over the dye molecule as a whole. Aliphatic hydrogen atoms prevent water molecules from accessing the N24 nitrogen atom. Considering H-bonded \"solute-solvent\" interactions by three water molecules led to a redshift of the entire spectrum by ≈15 nm. \nA strengthening of H-bonds with water molecules upon OX750 excitation was found, which explains this bathochromic effect. The intensity of low-frequency vibrations (including those involved in vibronic transitions) increases with the addition of bound water molecules, especially in an excited state. The vibration of the N-H bond of the imino group is strengthened (especially in an excited state) due to water molecule binding. Noticeable polarization of one water molecule bounded was revealed upon dye excitation. The vibronic model was also applied to calculate the emission spectrum of OX750 in the aqueous media.","PeriodicalId":169374,"journal":{"name":"Russian Journal of Biological Physics and Chemisrty","volume":"12 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VIBRONIC SPECTRA OF OXAZINE 750 DYE IN AQUEOUS MEDIA: A COMPUTATIONAL STUDY\",\"authors\":\"S. Leontieva\",\"doi\":\"10.29039/rusjbpc.2023.0643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The MN12SX/6-31++G(d,p)/SMD theory level exactly reproduced both positions of the main maximum and short-wavelength shoulder of OX750 absorption in an aqueous solution. The optimal functional for calculating the vibronic absorption spectra of different oxazine dyes in an aqueous solution was discussed based on the author’s present and previous studies. The absorption spectrum shoulder is caused by the vibronic transition. The vibrations involved in vibronic transitions correspond to large-scale molecular movements, are low-frequency, and very weak compared to the others. However, excitation significantly influences the vibrations including the most intensive ones. Photoinduced charge redistribution is local and there is no charge transfer over the dye molecule as a whole. Aliphatic hydrogen atoms prevent water molecules from accessing the N24 nitrogen atom. Considering H-bonded \\\"solute-solvent\\\" interactions by three water molecules led to a redshift of the entire spectrum by ≈15 nm. \\nA strengthening of H-bonds with water molecules upon OX750 excitation was found, which explains this bathochromic effect. The intensity of low-frequency vibrations (including those involved in vibronic transitions) increases with the addition of bound water molecules, especially in an excited state. The vibration of the N-H bond of the imino group is strengthened (especially in an excited state) due to water molecule binding. Noticeable polarization of one water molecule bounded was revealed upon dye excitation. The vibronic model was also applied to calculate the emission spectrum of OX750 in the aqueous media.\",\"PeriodicalId\":169374,\"journal\":{\"name\":\"Russian Journal of Biological Physics and Chemisrty\",\"volume\":\"12 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Biological Physics and Chemisrty\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29039/rusjbpc.2023.0643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Biological Physics and Chemisrty","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29039/rusjbpc.2023.0643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

MN12SX/6-31++G(d,p)/SMD 理论水平精确再现了水溶液中 OX750 吸收的主最大值和短波长肩的位置。根据作者目前和以往的研究,讨论了计算水溶液中不同噁嗪染料振子吸收光谱的最佳函数。吸收光谱肩是由振子跃迁引起的。参与振子跃迁的振动与大尺度分子运动相对应,频率较低,与其他振动相比非常微弱。然而,激发会对振动(包括最强烈的振动)产生重大影响。光诱导的电荷再分布是局部的,染料分子整体上没有电荷转移。脂肪族氢原子阻止水分子进入 N24 氮原子。考虑到三个水分子的 H 键 "溶质-溶剂 "相互作用,整个光谱的红移≈15 nm。研究发现,OX750 激发后,与水分子的 H 键作用得到加强,这也是这种浴色效应的原因。随着结合水分子的加入,特别是在激发态,低频振动的强度(包括参与振动跃迁的振动)会增加。由于水分子的结合,亚氨基的 N-H 键振动增强(尤其是在激发态)。染料激发时,一个水分子结合的极化现象明显。振子模型还被用于计算 OX750 在水介质中的发射光谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VIBRONIC SPECTRA OF OXAZINE 750 DYE IN AQUEOUS MEDIA: A COMPUTATIONAL STUDY
The MN12SX/6-31++G(d,p)/SMD theory level exactly reproduced both positions of the main maximum and short-wavelength shoulder of OX750 absorption in an aqueous solution. The optimal functional for calculating the vibronic absorption spectra of different oxazine dyes in an aqueous solution was discussed based on the author’s present and previous studies. The absorption spectrum shoulder is caused by the vibronic transition. The vibrations involved in vibronic transitions correspond to large-scale molecular movements, are low-frequency, and very weak compared to the others. However, excitation significantly influences the vibrations including the most intensive ones. Photoinduced charge redistribution is local and there is no charge transfer over the dye molecule as a whole. Aliphatic hydrogen atoms prevent water molecules from accessing the N24 nitrogen atom. Considering H-bonded "solute-solvent" interactions by three water molecules led to a redshift of the entire spectrum by ≈15 nm. A strengthening of H-bonds with water molecules upon OX750 excitation was found, which explains this bathochromic effect. The intensity of low-frequency vibrations (including those involved in vibronic transitions) increases with the addition of bound water molecules, especially in an excited state. The vibration of the N-H bond of the imino group is strengthened (especially in an excited state) due to water molecule binding. Noticeable polarization of one water molecule bounded was revealed upon dye excitation. The vibronic model was also applied to calculate the emission spectrum of OX750 in the aqueous media.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
STATISTICAL EVALUATION FOR BACTERIA ELECTRO-STIMULATION USING THE DUNNETT METHOD FOR A MICROBIAL FUEL CELL CRITICAL AND LETHAL OXYGEN CONCENTRATIONS FOR SOME BLACK SEA FISH (SHORT REVIEW) WEB-SERVICES FOR MICRORNA TARGET PREDICTION USING NEURAL NETWORKS RECONSTRUCTION OF GENE AND ASSOCIATIVE NETWORKS OF DISEASES TO SEARCH FOR TARGET GENES GENERALIZATION OF THE THERMOKINETIC OREGONATOR MODEL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1