基于模态振动提取方法的铰接列车车体共振机理研究

Guangyu Liu, Dao Gong, Jinsong Zhou
{"title":"基于模态振动提取方法的铰接列车车体共振机理研究","authors":"Guangyu Liu, Dao Gong, Jinsong Zhou","doi":"10.1177/10775463241256017","DOIUrl":null,"url":null,"abstract":"The physical vibration of railway train car body is the superposition of various modal vibrations of the car body. In this study, a modal vibration extraction method (MVEM) based on singular value decomposition and least squares fitting is proposed to decouple the physical vibration of the car body into modal vibrations. Then, from the perspective of modal vibration energy, the calculation method of modal vibration contribution (MVC) is proposed, and the main participating modes of the car body are tracked in the process of train operation, and the resonance mechanism of articulated train car body is analyzed based on them. The results show that the end constraint forms of the head car body and the middle car body of the articulated train are different, resulting in the influence of the velocity on the yaw vibration energy of the head car body is obviously greater than that of the middle car body; due to the articulated effect between the train car bodies, the yaw motion of each car body is aggravated, which further worsens the lateral ride quality of the car body floor above the bogie; with the increase of train running speed, the dominant modes contributing to car body vibration change from rigid modes to elastic modes. The first-order vertical bending mode, first-order lateral bending mode, and diamond-shaped deformation mode contribute greatly to car body vibration, and there is no resonance between them and bogie frame. In fact, geometric filtering is the reason for the resonance of the car body. Moreover, the geometric filtering phenomenon occurs in the vehicle with symmetric structure (middle vehicle) and the vehicle with incomplete symmetric structure (head vehicle), and the geometric filtering phenomenon also exists in the vertical and lateral vibration of the vehicle.","PeriodicalId":508293,"journal":{"name":"Journal of Vibration and Control","volume":"7 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on resonance mechanism of articulated train car body based on modal vibration extraction method\",\"authors\":\"Guangyu Liu, Dao Gong, Jinsong Zhou\",\"doi\":\"10.1177/10775463241256017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The physical vibration of railway train car body is the superposition of various modal vibrations of the car body. In this study, a modal vibration extraction method (MVEM) based on singular value decomposition and least squares fitting is proposed to decouple the physical vibration of the car body into modal vibrations. Then, from the perspective of modal vibration energy, the calculation method of modal vibration contribution (MVC) is proposed, and the main participating modes of the car body are tracked in the process of train operation, and the resonance mechanism of articulated train car body is analyzed based on them. The results show that the end constraint forms of the head car body and the middle car body of the articulated train are different, resulting in the influence of the velocity on the yaw vibration energy of the head car body is obviously greater than that of the middle car body; due to the articulated effect between the train car bodies, the yaw motion of each car body is aggravated, which further worsens the lateral ride quality of the car body floor above the bogie; with the increase of train running speed, the dominant modes contributing to car body vibration change from rigid modes to elastic modes. The first-order vertical bending mode, first-order lateral bending mode, and diamond-shaped deformation mode contribute greatly to car body vibration, and there is no resonance between them and bogie frame. In fact, geometric filtering is the reason for the resonance of the car body. Moreover, the geometric filtering phenomenon occurs in the vehicle with symmetric structure (middle vehicle) and the vehicle with incomplete symmetric structure (head vehicle), and the geometric filtering phenomenon also exists in the vertical and lateral vibration of the vehicle.\",\"PeriodicalId\":508293,\"journal\":{\"name\":\"Journal of Vibration and Control\",\"volume\":\"7 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vibration and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/10775463241256017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/10775463241256017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

铁路列车车体的物理振动是车体各种模态振动的叠加。本研究提出了一种基于奇异值分解和最小二乘法拟合的模态振动提取方法(MVEM),将车体的物理振动解耦为模态振动。然后,从模态振动能量的角度,提出了模态振动贡献率(MVC)的计算方法,跟踪了列车运行过程中车体的主要参与模态,并据此分析了铰接列车车体的共振机理。结果表明,铰接列车头部车体和中部车体的端部约束形式不同,导致头部车体的速度对偏航振动能量的影响明显大于中部车体;由于列车车体之间的铰接效应,加剧了各车体的偏航运动,进一步恶化了转向架上方车体底板的横向乘坐质量;随着列车运行速度的提高,车体振动的主导模态由刚性模态变为弹性模态。一阶垂直弯曲模态、一阶横向弯曲模态和菱形变形模态对车体振动的贡献较大,它们与转向架构架之间不存在共振。事实上,几何滤波是车身共振的原因。此外,对称结构的车辆(中间车辆)和不完全对称结构的车辆(头部车辆)都存在几何滤波现象,车辆的垂直和横向振动也存在几何滤波现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on resonance mechanism of articulated train car body based on modal vibration extraction method
The physical vibration of railway train car body is the superposition of various modal vibrations of the car body. In this study, a modal vibration extraction method (MVEM) based on singular value decomposition and least squares fitting is proposed to decouple the physical vibration of the car body into modal vibrations. Then, from the perspective of modal vibration energy, the calculation method of modal vibration contribution (MVC) is proposed, and the main participating modes of the car body are tracked in the process of train operation, and the resonance mechanism of articulated train car body is analyzed based on them. The results show that the end constraint forms of the head car body and the middle car body of the articulated train are different, resulting in the influence of the velocity on the yaw vibration energy of the head car body is obviously greater than that of the middle car body; due to the articulated effect between the train car bodies, the yaw motion of each car body is aggravated, which further worsens the lateral ride quality of the car body floor above the bogie; with the increase of train running speed, the dominant modes contributing to car body vibration change from rigid modes to elastic modes. The first-order vertical bending mode, first-order lateral bending mode, and diamond-shaped deformation mode contribute greatly to car body vibration, and there is no resonance between them and bogie frame. In fact, geometric filtering is the reason for the resonance of the car body. Moreover, the geometric filtering phenomenon occurs in the vehicle with symmetric structure (middle vehicle) and the vehicle with incomplete symmetric structure (head vehicle), and the geometric filtering phenomenon also exists in the vertical and lateral vibration of the vehicle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Resonance frequency tracking control of a three-degree-of-freedom acoustic resonance system Dynamic modeling of configuration-controllable phononic crystal using NARX neural networks Laminated permanent magnet array eddy current damper for large-scale precision micro-vibration isolation Direct solutions for robust vibration suppression through motion design Semi-active yaw dampers in locomotive running gear: New control algorithms and verification of their stabilising effect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1