通过改性聚偏二氟乙烯锂化碳层实现卓越稳定的高压钴酸锂

IF 19.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Carbon Energy Pub Date : 2024-06-05 DOI:10.1002/cey2.602
Qihang Ding, Zewen Jiang, Kean Chen, Hui Li, Jingzhe Shi, Xinping Ai, Dingguo Xia
{"title":"通过改性聚偏二氟乙烯锂化碳层实现卓越稳定的高压钴酸锂","authors":"Qihang Ding,&nbsp;Zewen Jiang,&nbsp;Kean Chen,&nbsp;Hui Li,&nbsp;Jingzhe Shi,&nbsp;Xinping Ai,&nbsp;Dingguo Xia","doi":"10.1002/cey2.602","DOIUrl":null,"url":null,"abstract":"<p>High-voltage LiCoO<sub>2</sub> (LCO) can deliver a high capacity and therefore significantly boost the energy density of Li-ion batteries (LIBs). However, its cyclability is still a major problem in terms of commercial applications. Herein, we propose a simple but effective method to greatly improve the high-voltage cyclability of an LCO cathode by constructing a surface LiF modification layer via pyrolysis of the lithiated polyvinylidene fluoride (Li-PVDF) coating under air atmosphere. Benefitting from the good film-forming and strong adhesion ability of Li-PVDF, the thus-obtained LiF layer is uniform, dense, and conformal; therefore, it is capable of acting as a barrier layer to effectively protect the LCO surface from direct exposure to the electrolyte, thus suppressing the interfacial side reactions and surface structure deterioration. Consequently, the high-voltage stability of the LCO electrode is significantly enhanced. Under a high charge cutoff voltage of 4.6 V, the LiF-modified LCO (LiF@LCO) cathode demonstrates a high capacity of 201 mA h g<sup>−1</sup> at 0.1 C and a stable cycling performance at 0.5 C with 80.5% capacity retention after 700 cycles, outperforming the vast majority of high-voltage LCO cathodes reported so far.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 10","pages":""},"PeriodicalIF":19.5000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.602","citationCount":"0","resultStr":"{\"title\":\"Superior stable high-voltage LiCoO2 enabled by modification with a layer of lithiated polyvinylidene fluoride-derived LiF\",\"authors\":\"Qihang Ding,&nbsp;Zewen Jiang,&nbsp;Kean Chen,&nbsp;Hui Li,&nbsp;Jingzhe Shi,&nbsp;Xinping Ai,&nbsp;Dingguo Xia\",\"doi\":\"10.1002/cey2.602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High-voltage LiCoO<sub>2</sub> (LCO) can deliver a high capacity and therefore significantly boost the energy density of Li-ion batteries (LIBs). However, its cyclability is still a major problem in terms of commercial applications. Herein, we propose a simple but effective method to greatly improve the high-voltage cyclability of an LCO cathode by constructing a surface LiF modification layer via pyrolysis of the lithiated polyvinylidene fluoride (Li-PVDF) coating under air atmosphere. Benefitting from the good film-forming and strong adhesion ability of Li-PVDF, the thus-obtained LiF layer is uniform, dense, and conformal; therefore, it is capable of acting as a barrier layer to effectively protect the LCO surface from direct exposure to the electrolyte, thus suppressing the interfacial side reactions and surface structure deterioration. Consequently, the high-voltage stability of the LCO electrode is significantly enhanced. Under a high charge cutoff voltage of 4.6 V, the LiF-modified LCO (LiF@LCO) cathode demonstrates a high capacity of 201 mA h g<sup>−1</sup> at 0.1 C and a stable cycling performance at 0.5 C with 80.5% capacity retention after 700 cycles, outperforming the vast majority of high-voltage LCO cathodes reported so far.</p>\",\"PeriodicalId\":33706,\"journal\":{\"name\":\"Carbon Energy\",\"volume\":\"6 10\",\"pages\":\"\"},\"PeriodicalIF\":19.5000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.602\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cey2.602\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.602","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

高压钴酸锂(LCO)可提供高容量,从而显著提高锂离子电池(LIB)的能量密度。然而,就商业应用而言,其循环性仍是一个主要问题。在此,我们提出了一种简单而有效的方法,通过在空气环境下热解锂化聚偏二氟乙烯(Li-PVDF)涂层来构建表面锂论坛改性层,从而大大提高 LCO 阴极的高压循环性。由于锂化聚偏氟乙烯(Li-PVDF)具有良好的成膜性和较强的附着力,因此得到的锂化物改性层均匀、致密、保形,能够作为阻挡层有效保护 LCO 表面不直接接触电解质,从而抑制界面副反应和表面结构劣化。因此,LCO 电极的高压稳定性显著增强。在 4.6 V 的高充电截止电压下,LiF 改性 LCO(LiF@LCO)阴极在 0.1 C 时的容量高达 201 mA h g-1,在 0.5 C 时的循环性能稳定,700 次循环后的容量保持率为 80.5%,优于迄今报道的绝大多数高压 LCO 阴极。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Superior stable high-voltage LiCoO2 enabled by modification with a layer of lithiated polyvinylidene fluoride-derived LiF

High-voltage LiCoO2 (LCO) can deliver a high capacity and therefore significantly boost the energy density of Li-ion batteries (LIBs). However, its cyclability is still a major problem in terms of commercial applications. Herein, we propose a simple but effective method to greatly improve the high-voltage cyclability of an LCO cathode by constructing a surface LiF modification layer via pyrolysis of the lithiated polyvinylidene fluoride (Li-PVDF) coating under air atmosphere. Benefitting from the good film-forming and strong adhesion ability of Li-PVDF, the thus-obtained LiF layer is uniform, dense, and conformal; therefore, it is capable of acting as a barrier layer to effectively protect the LCO surface from direct exposure to the electrolyte, thus suppressing the interfacial side reactions and surface structure deterioration. Consequently, the high-voltage stability of the LCO electrode is significantly enhanced. Under a high charge cutoff voltage of 4.6 V, the LiF-modified LCO (LiF@LCO) cathode demonstrates a high capacity of 201 mA h g−1 at 0.1 C and a stable cycling performance at 0.5 C with 80.5% capacity retention after 700 cycles, outperforming the vast majority of high-voltage LCO cathodes reported so far.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Energy
Carbon Energy Multiple-
CiteScore
25.70
自引率
10.70%
发文量
116
审稿时长
4 weeks
期刊介绍: Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.
期刊最新文献
Issue Information Cover Image, Volume 6, Number 10, October 2024 Back Cover Image, Volume 6, Number 10, October 2024 Interface and doping engineering of V2C-MXene-based electrocatalysts for enhanced electrocatalysis of overall water splitting Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1