模型结构和校准策略对德国低山岭基流模型的影响

IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Hydroinformatics Pub Date : 2024-06-05 DOI:10.2166/hydro.2024.077
M. Kissel, Michael Bach, Britta Schmalz
{"title":"模型结构和校准策略对德国低山岭基流模型的影响","authors":"M. Kissel, Michael Bach, Britta Schmalz","doi":"10.2166/hydro.2024.077","DOIUrl":null,"url":null,"abstract":"\n \n Baseflow is a vital component of the water balance. The fractured hard rock aquifers of the German low mountain range are in danger of increased water stress due to climate change because they react rapidly to deficits in precipitation and groundwater tables decline sharply. Therefore, simulation software must be able to model baseflow accurately. Three soil moisture simulation and two monthly factor-based baseflow models are evaluated using two calibration strategies. Models were calibrated to total flow (S1) or stepwise to baseflow and then total flow (S2). Results were not significantly different for total flow. Regarding baseflow, S2 proved significantly better with median values (S1 calibration, validation | S2 calibration, validation) of SSE (20.3, 20.3 | 13.5, 13.8), LnNSE (0.15, 0.17 | 0.47, 0.34), and PBIAS (27.8, 21.6 | 2.5, −0.8). Parallel linear reservoir proved best at modeling baseflow with a median SSE (S2: 6.1, 5.9), LnNSE (S2: 0.64, 0.71), and PBIAS (S2: 3.8, 3.8). The new modified monthly factor approach is a simple and robust alternative with SSE (13.0, 13.3), LnNSE (0.61, 0.61), and PBIAS (9.8, −8.6). The results are useful regarding selection of baseflow model structure and calibration strategy in low mountain ranges with fractured hard rock aquifers.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of the model structure and calibration strategy on baseflow modeling in the German low mountain range\",\"authors\":\"M. Kissel, Michael Bach, Britta Schmalz\",\"doi\":\"10.2166/hydro.2024.077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n Baseflow is a vital component of the water balance. The fractured hard rock aquifers of the German low mountain range are in danger of increased water stress due to climate change because they react rapidly to deficits in precipitation and groundwater tables decline sharply. Therefore, simulation software must be able to model baseflow accurately. Three soil moisture simulation and two monthly factor-based baseflow models are evaluated using two calibration strategies. Models were calibrated to total flow (S1) or stepwise to baseflow and then total flow (S2). Results were not significantly different for total flow. Regarding baseflow, S2 proved significantly better with median values (S1 calibration, validation | S2 calibration, validation) of SSE (20.3, 20.3 | 13.5, 13.8), LnNSE (0.15, 0.17 | 0.47, 0.34), and PBIAS (27.8, 21.6 | 2.5, −0.8). Parallel linear reservoir proved best at modeling baseflow with a median SSE (S2: 6.1, 5.9), LnNSE (S2: 0.64, 0.71), and PBIAS (S2: 3.8, 3.8). The new modified monthly factor approach is a simple and robust alternative with SSE (13.0, 13.3), LnNSE (0.61, 0.61), and PBIAS (9.8, −8.6). The results are useful regarding selection of baseflow model structure and calibration strategy in low mountain ranges with fractured hard rock aquifers.\",\"PeriodicalId\":54801,\"journal\":{\"name\":\"Journal of Hydroinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydroinformatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2166/hydro.2024.077\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2166/hydro.2024.077","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

基流是水量平衡的重要组成部分。德国低山丘陵地区的断裂硬岩含水层对降水不足反应迅速,地下水位急剧下降,因此有可能因气候变化而加剧水资源紧张。因此,模拟软件必须能够准确模拟基流。采用两种校准策略对三种土壤水分模拟模型和两种基于月因子的基流模型进行了评估。模型校准为总流量(S1)或先校准为基流再校准为总流量(S2)。总流量的校核结果差异不大。在基流方面,S2 的中值(S1 校准、验证 | S2 校准、验证)SSE(20.3,20.3 | 13.5,13.8)、LnNSE(0.15,0.17 | 0.47,0.34)和 PBIAS(27.8,21.6 | 2.5,-0.8)明显更好。平行线性水库的基流建模效果最好,其中位数为 SSE(S2:6.1,5.9)、LnNSE(S2:0.64,0.71)和 PBIAS(S2:3.8,3.8)。新的修正月度因子法是一种简单而稳健的替代方法,其上限值(13.0,13.3)、LnNSE(0.61,0.61)和 PBIAS(9.8,-8.6)。这些结果有助于在有断裂硬岩含水层的低山岭地区选择基流模型结构和校准策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of the model structure and calibration strategy on baseflow modeling in the German low mountain range
Baseflow is a vital component of the water balance. The fractured hard rock aquifers of the German low mountain range are in danger of increased water stress due to climate change because they react rapidly to deficits in precipitation and groundwater tables decline sharply. Therefore, simulation software must be able to model baseflow accurately. Three soil moisture simulation and two monthly factor-based baseflow models are evaluated using two calibration strategies. Models were calibrated to total flow (S1) or stepwise to baseflow and then total flow (S2). Results were not significantly different for total flow. Regarding baseflow, S2 proved significantly better with median values (S1 calibration, validation | S2 calibration, validation) of SSE (20.3, 20.3 | 13.5, 13.8), LnNSE (0.15, 0.17 | 0.47, 0.34), and PBIAS (27.8, 21.6 | 2.5, −0.8). Parallel linear reservoir proved best at modeling baseflow with a median SSE (S2: 6.1, 5.9), LnNSE (S2: 0.64, 0.71), and PBIAS (S2: 3.8, 3.8). The new modified monthly factor approach is a simple and robust alternative with SSE (13.0, 13.3), LnNSE (0.61, 0.61), and PBIAS (9.8, −8.6). The results are useful regarding selection of baseflow model structure and calibration strategy in low mountain ranges with fractured hard rock aquifers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydroinformatics
Journal of Hydroinformatics 工程技术-工程:土木
CiteScore
4.80
自引率
3.70%
发文量
59
审稿时长
3 months
期刊介绍: Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.
期刊最新文献
Sensitivity of model-based leakage localisation in water distribution networks to water demand sampling rates and spatio-temporal data gaps Efficient functioning of a sewer system: application of novel hybrid machine learning methods for the prediction of particle Froude number Quantile mapping technique for enhancing satellite-derived precipitation data in hydrological modelling: a case study of the Lam River Basin, Vietnam Development and application of a hybrid artificial neural network model for simulating future stream flows in catchments with limited in situ observed data Formation of meandering streams in a young floodplain within the Yarlung Tsangpo Grand Canyon in the Tibetan Plateau
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1