C. P. Ajey, Kanchiraya Shivalingaiah, G. Chalageri, Shivakumar K. Malladad, K. G. Shetty, G. Vikas, R. B. Ashok
{"title":"使用纳米流体的双管热交换器性能分析","authors":"C. P. Ajey, Kanchiraya Shivalingaiah, G. Chalageri, Shivakumar K. Malladad, K. G. Shetty, G. Vikas, R. B. Ashok","doi":"10.18311/jmmf/2024/42128","DOIUrl":null,"url":null,"abstract":"Choosing an appropriate heat transfer fluid is a crucial factor in the design of a heat exchange system. A nanofluid is a colloidal mixture composed of a base fluid and nanoparticles. It is a promising heat transfer fluid in various applications due to its improved thermal conductivity and heat transfer rate. The increasing demand and acceptance for nano-fluids as heat transfer fluids in various applications have led to an increase in research investigations on this topic. Nanofluid technology has recently expanded to include the impregnation of multiple nanoparticles in base fluids, known as hybrid or nanocomposites. For this study, we have chosen three distinct nanoparticles and two base fluids to examine their thermo-physical characteristics and heat transmission rate. Nanofluid is prepared via the sonication method. The experiment is used to determine the thermosphysical characteristics of various nano-fluids. The double-pipe heat exchanger is employed to measure the heat transfer rate and efficiency of nano-fluids. Among six samples prepared in the present work, the ZnO2+CNT+TiO2+EG sample had shown reduced kinematic and dynamic viscosities for all the temperature ranges. However, an average value of heat transfer rate was recorded for ZnO2+CNT+TiO2+EG at 675.87 (J/s) for parallel flow and 630.79 (J/s) for counter flow. And the least effectiveness was recorded for distilled water. The hybrid nanofluid demonstrates a superior heat transfer rate and effectiveness in both parallel flow and counter flow applications. Therefore, it may be efficiently utilised in many heat transfer applications.","PeriodicalId":39575,"journal":{"name":"Journal of Mines, Metals and Fuels","volume":"223 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Analysis of Double Pipe Heat Exchanger Using Nano Fluids\",\"authors\":\"C. P. Ajey, Kanchiraya Shivalingaiah, G. Chalageri, Shivakumar K. Malladad, K. G. Shetty, G. Vikas, R. B. Ashok\",\"doi\":\"10.18311/jmmf/2024/42128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Choosing an appropriate heat transfer fluid is a crucial factor in the design of a heat exchange system. A nanofluid is a colloidal mixture composed of a base fluid and nanoparticles. It is a promising heat transfer fluid in various applications due to its improved thermal conductivity and heat transfer rate. The increasing demand and acceptance for nano-fluids as heat transfer fluids in various applications have led to an increase in research investigations on this topic. Nanofluid technology has recently expanded to include the impregnation of multiple nanoparticles in base fluids, known as hybrid or nanocomposites. For this study, we have chosen three distinct nanoparticles and two base fluids to examine their thermo-physical characteristics and heat transmission rate. Nanofluid is prepared via the sonication method. The experiment is used to determine the thermosphysical characteristics of various nano-fluids. The double-pipe heat exchanger is employed to measure the heat transfer rate and efficiency of nano-fluids. Among six samples prepared in the present work, the ZnO2+CNT+TiO2+EG sample had shown reduced kinematic and dynamic viscosities for all the temperature ranges. However, an average value of heat transfer rate was recorded for ZnO2+CNT+TiO2+EG at 675.87 (J/s) for parallel flow and 630.79 (J/s) for counter flow. And the least effectiveness was recorded for distilled water. The hybrid nanofluid demonstrates a superior heat transfer rate and effectiveness in both parallel flow and counter flow applications. Therefore, it may be efficiently utilised in many heat transfer applications.\",\"PeriodicalId\":39575,\"journal\":{\"name\":\"Journal of Mines, Metals and Fuels\",\"volume\":\"223 23\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mines, Metals and Fuels\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18311/jmmf/2024/42128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mines, Metals and Fuels","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18311/jmmf/2024/42128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Energy","Score":null,"Total":0}
Performance Analysis of Double Pipe Heat Exchanger Using Nano Fluids
Choosing an appropriate heat transfer fluid is a crucial factor in the design of a heat exchange system. A nanofluid is a colloidal mixture composed of a base fluid and nanoparticles. It is a promising heat transfer fluid in various applications due to its improved thermal conductivity and heat transfer rate. The increasing demand and acceptance for nano-fluids as heat transfer fluids in various applications have led to an increase in research investigations on this topic. Nanofluid technology has recently expanded to include the impregnation of multiple nanoparticles in base fluids, known as hybrid or nanocomposites. For this study, we have chosen three distinct nanoparticles and two base fluids to examine their thermo-physical characteristics and heat transmission rate. Nanofluid is prepared via the sonication method. The experiment is used to determine the thermosphysical characteristics of various nano-fluids. The double-pipe heat exchanger is employed to measure the heat transfer rate and efficiency of nano-fluids. Among six samples prepared in the present work, the ZnO2+CNT+TiO2+EG sample had shown reduced kinematic and dynamic viscosities for all the temperature ranges. However, an average value of heat transfer rate was recorded for ZnO2+CNT+TiO2+EG at 675.87 (J/s) for parallel flow and 630.79 (J/s) for counter flow. And the least effectiveness was recorded for distilled water. The hybrid nanofluid demonstrates a superior heat transfer rate and effectiveness in both parallel flow and counter flow applications. Therefore, it may be efficiently utilised in many heat transfer applications.