为考虑罕见干扰的军工供应链开发风险评估和供应商复原力模型

Logistics Pub Date : 2024-06-04 DOI:10.3390/logistics8020057
Anna Urmston, Dongping Song, Andrew Lyons
{"title":"为考虑罕见干扰的军工供应链开发风险评估和供应商复原力模型","authors":"Anna Urmston, Dongping Song, Andrew Lyons","doi":"10.3390/logistics8020057","DOIUrl":null,"url":null,"abstract":"Background: Supply chain risk and resilience in non-profit-seeking industries involving governmental agencies and quasi-governmental agencies have been under-studied. This paper focuses on the military industrial supply chain to demonstrate the development of risk assessment and supplier resilience models considering one-off disruption events such as the COVID-19 disruption. Methods: We establish relevant resilience-based categories through a literature review, supported by the experiences of supply chain experts within the military industry. We quantify the severity of the identified resilience categories, their detectability, and their occurrence probabilities. The failure modes and effects analysis technique is used to evaluate the risk priorities for the resilience categories to develop a risk assessment model. The risk assessment model is then extended to a supplier resilience model by incorporating specific rare disruption factors, which can act as a scenario planning tool. Results: It is found that (i) the top four resilience sub-categories are financial, topical data, business continuity planning, and supply chain mapping, while cost reduction strategies and green material usage are the least important; (ii) the main areas requiring focus are topical data, supply chain depth awareness, business continuity management, and internal risk management; and (iii) suppliers have least resilience in the areas of ‘topical information’ and ‘business continuity strategy’. Conclusions: The tool developed can help military industrial supply chains identify the main areas to enhance resilience from multiple perspectives of severity, occurrence probability, detectability, and suppliers.","PeriodicalId":507203,"journal":{"name":"Logistics","volume":"105 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Development of Risk Assessments and Supplier Resilience Models for Military Industrial Supply Chains Considering Rare Disruptions\",\"authors\":\"Anna Urmston, Dongping Song, Andrew Lyons\",\"doi\":\"10.3390/logistics8020057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Supply chain risk and resilience in non-profit-seeking industries involving governmental agencies and quasi-governmental agencies have been under-studied. This paper focuses on the military industrial supply chain to demonstrate the development of risk assessment and supplier resilience models considering one-off disruption events such as the COVID-19 disruption. Methods: We establish relevant resilience-based categories through a literature review, supported by the experiences of supply chain experts within the military industry. We quantify the severity of the identified resilience categories, their detectability, and their occurrence probabilities. The failure modes and effects analysis technique is used to evaluate the risk priorities for the resilience categories to develop a risk assessment model. The risk assessment model is then extended to a supplier resilience model by incorporating specific rare disruption factors, which can act as a scenario planning tool. Results: It is found that (i) the top four resilience sub-categories are financial, topical data, business continuity planning, and supply chain mapping, while cost reduction strategies and green material usage are the least important; (ii) the main areas requiring focus are topical data, supply chain depth awareness, business continuity management, and internal risk management; and (iii) suppliers have least resilience in the areas of ‘topical information’ and ‘business continuity strategy’. Conclusions: The tool developed can help military industrial supply chains identify the main areas to enhance resilience from multiple perspectives of severity, occurrence probability, detectability, and suppliers.\",\"PeriodicalId\":507203,\"journal\":{\"name\":\"Logistics\",\"volume\":\"105 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Logistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/logistics8020057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/logistics8020057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:对涉及政府机构和准政府机构的非营利性行业的供应链风险和复原力研究不足。本文以军工供应链为重点,展示了考虑到一次性中断事件(如 COVID-19 中断)的风险评估和供应商恢复力模型的发展情况。方法:我们通过文献综述,结合军工行业供应链专家的经验,建立了基于复原力的相关类别。我们对已确定的复原力类别的严重性、可探测性及其发生概率进行量化。采用失效模式与效应分析技术来评估复原力类别的风险优先级,从而建立风险评估模型。然后,通过纳入特定的罕见干扰因素,将风险评估模型扩展为供应商复原力模型,该模型可作为情景规划工具。结果:结果发现:(i) 前四个复原力子类别是财务、专题数据、业务连续性规划和供应链规划,而降低成本战略和绿色材料使用的重要性最低;(ii) 需要重点关注的主要领域是专题数据、供应链深度意识、业务连续性管理和内部风险管理;(iii) 供应商在 "专题信息 "和 "业务连续性战略 "领域的复原力最低。结论:所开发的工具可帮助军工供应链从严重性、发生概率、可探测性和供应商等多个角度确定需要加强复原力的主要领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Development of Risk Assessments and Supplier Resilience Models for Military Industrial Supply Chains Considering Rare Disruptions
Background: Supply chain risk and resilience in non-profit-seeking industries involving governmental agencies and quasi-governmental agencies have been under-studied. This paper focuses on the military industrial supply chain to demonstrate the development of risk assessment and supplier resilience models considering one-off disruption events such as the COVID-19 disruption. Methods: We establish relevant resilience-based categories through a literature review, supported by the experiences of supply chain experts within the military industry. We quantify the severity of the identified resilience categories, their detectability, and their occurrence probabilities. The failure modes and effects analysis technique is used to evaluate the risk priorities for the resilience categories to develop a risk assessment model. The risk assessment model is then extended to a supplier resilience model by incorporating specific rare disruption factors, which can act as a scenario planning tool. Results: It is found that (i) the top four resilience sub-categories are financial, topical data, business continuity planning, and supply chain mapping, while cost reduction strategies and green material usage are the least important; (ii) the main areas requiring focus are topical data, supply chain depth awareness, business continuity management, and internal risk management; and (iii) suppliers have least resilience in the areas of ‘topical information’ and ‘business continuity strategy’. Conclusions: The tool developed can help military industrial supply chains identify the main areas to enhance resilience from multiple perspectives of severity, occurrence probability, detectability, and suppliers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation-Based Optimization of Truck Appointment Systems in Container Terminals: A Dual Transactions Approach with Improved Congestion Factor Representation Multi-Objective Technology-Based Approach to Home Healthcare Routing Problem Considering Sustainability Aspects Enhancing Supplier Selection for Sustainable Raw Materials: A Comprehensive Analysis Using Analytical Network Process (ANP) and TOPSIS Methods Enhancing Supply Chain Agility and Sustainability through Machine Learning: Optimization Techniques for Logistics and Inventory Management An Examination of Human Fast and Frugal Heuristic Decisions for Truckload Spot Pricing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1