Xi Luo, Jiangkai Yu, Haoran Tang, Houji Cai, Wei Xiong, Kai Zhang, Fei Huang, Yong Cao
{"title":"具有缺电子醌单元的自掺杂共轭聚合物,用于增强高效有机太阳能电池中的电子传输","authors":"Xi Luo, Jiangkai Yu, Haoran Tang, Houji Cai, Wei Xiong, Kai Zhang, Fei Huang, Yong Cao","doi":"10.1002/flm2.17","DOIUrl":null,"url":null,"abstract":"<p>Organic solar cells (OSCs) have attracted significant attention as a burgeoning flexible technology, owing to their advanced power conversion efficiencies. Moreover, interface materials play a crucial role in optimizing energy level alignment between the active layer and electrodes, thereby enhancing carrier extraction within the device and improving efficiency. However, current methodologies for fabricating electron-transport materials with superior mobility are still limited compared with those for hole-transport materials. In this study, a benzodifurandione (BFDO)-derived building block with quinone resonance property and strong electron-withdrawing capability was synthesized. Two conjugated polymers, namely PBFDO-F6N and PBFDO-F6N-Br, were prepared, both of which exhibited good electron mobility and exceptional interface modification capabilities. A comprehensive investigation of the interaction between the interface layer and the active layer revealed that PBFDO-F6N induced doping at the acceptor interface. Additionally, the high mobility of PBFDO-F6N facilitated efficient carrier extraction at the interface. Consequently, the application of PBFDO-F6N as the cathode interface layer for PM6:BTP-eC9-based OSC devices resulted in a remarkable efficiency of 18.11%. Moreover, the device efficiency remained at ∼96% even at a PBFDO-F6N interface thickness of 50 nm, demonstrating the great potential of this material for large-scale device preparation.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":"1 2","pages":"105-115"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.17","citationCount":"0","resultStr":"{\"title\":\"Self-doped conjugated polymers with electron-deficient quinone units for enhanced electron transport in highly efficient organic solar cells\",\"authors\":\"Xi Luo, Jiangkai Yu, Haoran Tang, Houji Cai, Wei Xiong, Kai Zhang, Fei Huang, Yong Cao\",\"doi\":\"10.1002/flm2.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Organic solar cells (OSCs) have attracted significant attention as a burgeoning flexible technology, owing to their advanced power conversion efficiencies. Moreover, interface materials play a crucial role in optimizing energy level alignment between the active layer and electrodes, thereby enhancing carrier extraction within the device and improving efficiency. However, current methodologies for fabricating electron-transport materials with superior mobility are still limited compared with those for hole-transport materials. In this study, a benzodifurandione (BFDO)-derived building block with quinone resonance property and strong electron-withdrawing capability was synthesized. Two conjugated polymers, namely PBFDO-F6N and PBFDO-F6N-Br, were prepared, both of which exhibited good electron mobility and exceptional interface modification capabilities. A comprehensive investigation of the interaction between the interface layer and the active layer revealed that PBFDO-F6N induced doping at the acceptor interface. Additionally, the high mobility of PBFDO-F6N facilitated efficient carrier extraction at the interface. Consequently, the application of PBFDO-F6N as the cathode interface layer for PM6:BTP-eC9-based OSC devices resulted in a remarkable efficiency of 18.11%. Moreover, the device efficiency remained at ∼96% even at a PBFDO-F6N interface thickness of 50 nm, demonstrating the great potential of this material for large-scale device preparation.</p>\",\"PeriodicalId\":100533,\"journal\":{\"name\":\"FlexMat\",\"volume\":\"1 2\",\"pages\":\"105-115\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.17\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FlexMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/flm2.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlexMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/flm2.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Self-doped conjugated polymers with electron-deficient quinone units for enhanced electron transport in highly efficient organic solar cells
Organic solar cells (OSCs) have attracted significant attention as a burgeoning flexible technology, owing to their advanced power conversion efficiencies. Moreover, interface materials play a crucial role in optimizing energy level alignment between the active layer and electrodes, thereby enhancing carrier extraction within the device and improving efficiency. However, current methodologies for fabricating electron-transport materials with superior mobility are still limited compared with those for hole-transport materials. In this study, a benzodifurandione (BFDO)-derived building block with quinone resonance property and strong electron-withdrawing capability was synthesized. Two conjugated polymers, namely PBFDO-F6N and PBFDO-F6N-Br, were prepared, both of which exhibited good electron mobility and exceptional interface modification capabilities. A comprehensive investigation of the interaction between the interface layer and the active layer revealed that PBFDO-F6N induced doping at the acceptor interface. Additionally, the high mobility of PBFDO-F6N facilitated efficient carrier extraction at the interface. Consequently, the application of PBFDO-F6N as the cathode interface layer for PM6:BTP-eC9-based OSC devices resulted in a remarkable efficiency of 18.11%. Moreover, the device efficiency remained at ∼96% even at a PBFDO-F6N interface thickness of 50 nm, demonstrating the great potential of this material for large-scale device preparation.