具有缺电子醌单元的自掺杂共轭聚合物,用于增强高效有机太阳能电池中的电子传输

FlexMat Pub Date : 2024-06-04 DOI:10.1002/flm2.17
Xi Luo, Jiangkai Yu, Haoran Tang, Houji Cai, Wei Xiong, Kai Zhang, Fei Huang, Yong Cao
{"title":"具有缺电子醌单元的自掺杂共轭聚合物,用于增强高效有机太阳能电池中的电子传输","authors":"Xi Luo,&nbsp;Jiangkai Yu,&nbsp;Haoran Tang,&nbsp;Houji Cai,&nbsp;Wei Xiong,&nbsp;Kai Zhang,&nbsp;Fei Huang,&nbsp;Yong Cao","doi":"10.1002/flm2.17","DOIUrl":null,"url":null,"abstract":"<p>Organic solar cells (OSCs) have attracted significant attention as a burgeoning flexible technology, owing to their advanced power conversion efficiencies. Moreover, interface materials play a crucial role in optimizing energy level alignment between the active layer and electrodes, thereby enhancing carrier extraction within the device and improving efficiency. However, current methodologies for fabricating electron-transport materials with superior mobility are still limited compared with those for hole-transport materials. In this study, a benzodifurandione (BFDO)-derived building block with quinone resonance property and strong electron-withdrawing capability was synthesized. Two conjugated polymers, namely PBFDO-F6N and PBFDO-F6N-Br, were prepared, both of which exhibited good electron mobility and exceptional interface modification capabilities. A comprehensive investigation of the interaction between the interface layer and the active layer revealed that PBFDO-F6N induced doping at the acceptor interface. Additionally, the high mobility of PBFDO-F6N facilitated efficient carrier extraction at the interface. Consequently, the application of PBFDO-F6N as the cathode interface layer for PM6:BTP-eC9-based OSC devices resulted in a remarkable efficiency of 18.11%. Moreover, the device efficiency remained at ∼96% even at a PBFDO-F6N interface thickness of 50 nm, demonstrating the great potential of this material for large-scale device preparation.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":"1 2","pages":"105-115"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.17","citationCount":"0","resultStr":"{\"title\":\"Self-doped conjugated polymers with electron-deficient quinone units for enhanced electron transport in highly efficient organic solar cells\",\"authors\":\"Xi Luo,&nbsp;Jiangkai Yu,&nbsp;Haoran Tang,&nbsp;Houji Cai,&nbsp;Wei Xiong,&nbsp;Kai Zhang,&nbsp;Fei Huang,&nbsp;Yong Cao\",\"doi\":\"10.1002/flm2.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Organic solar cells (OSCs) have attracted significant attention as a burgeoning flexible technology, owing to their advanced power conversion efficiencies. Moreover, interface materials play a crucial role in optimizing energy level alignment between the active layer and electrodes, thereby enhancing carrier extraction within the device and improving efficiency. However, current methodologies for fabricating electron-transport materials with superior mobility are still limited compared with those for hole-transport materials. In this study, a benzodifurandione (BFDO)-derived building block with quinone resonance property and strong electron-withdrawing capability was synthesized. Two conjugated polymers, namely PBFDO-F6N and PBFDO-F6N-Br, were prepared, both of which exhibited good electron mobility and exceptional interface modification capabilities. A comprehensive investigation of the interaction between the interface layer and the active layer revealed that PBFDO-F6N induced doping at the acceptor interface. Additionally, the high mobility of PBFDO-F6N facilitated efficient carrier extraction at the interface. Consequently, the application of PBFDO-F6N as the cathode interface layer for PM6:BTP-eC9-based OSC devices resulted in a remarkable efficiency of 18.11%. Moreover, the device efficiency remained at ∼96% even at a PBFDO-F6N interface thickness of 50 nm, demonstrating the great potential of this material for large-scale device preparation.</p>\",\"PeriodicalId\":100533,\"journal\":{\"name\":\"FlexMat\",\"volume\":\"1 2\",\"pages\":\"105-115\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.17\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FlexMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/flm2.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlexMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/flm2.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有机太阳能电池(OSC)作为一种新兴的柔性技术,因其先进的功率转换效率而备受关注。此外,界面材料在优化有源层和电极之间的能级排列方面起着至关重要的作用,从而增强了器件内的载流子萃取并提高了效率。然而,与空穴传输材料相比,目前制造具有优异迁移率的电子传输材料的方法仍然有限。本研究合成了一种由苯并二呋喃二酮(BFDO)衍生的构筑基块,它具有醌共振特性和强大的电子吸收能力。研究制备了两种共轭聚合物,即 PBFDO-F6N 和 PBFDO-F6N-Br,这两种聚合物都表现出良好的电子迁移率和优异的界面修饰能力。对界面层和活性层之间相互作用的全面研究表明,PBFDO-F6N 在受体界面诱导了掺杂。此外,PBFDO-F6N 的高迁移率还有助于在界面上高效提取载流子。因此,将 PBFDO-F6N 用作基于 PM6:BTP-eC9 的 OSC 器件的阴极界面层,可实现 18.11% 的显著效率。此外,即使 PBFDO-F6N 界面厚度为 50 nm,器件效率仍保持在 96% 以上,这表明这种材料在大规模器件制备方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-doped conjugated polymers with electron-deficient quinone units for enhanced electron transport in highly efficient organic solar cells

Organic solar cells (OSCs) have attracted significant attention as a burgeoning flexible technology, owing to their advanced power conversion efficiencies. Moreover, interface materials play a crucial role in optimizing energy level alignment between the active layer and electrodes, thereby enhancing carrier extraction within the device and improving efficiency. However, current methodologies for fabricating electron-transport materials with superior mobility are still limited compared with those for hole-transport materials. In this study, a benzodifurandione (BFDO)-derived building block with quinone resonance property and strong electron-withdrawing capability was synthesized. Two conjugated polymers, namely PBFDO-F6N and PBFDO-F6N-Br, were prepared, both of which exhibited good electron mobility and exceptional interface modification capabilities. A comprehensive investigation of the interaction between the interface layer and the active layer revealed that PBFDO-F6N induced doping at the acceptor interface. Additionally, the high mobility of PBFDO-F6N facilitated efficient carrier extraction at the interface. Consequently, the application of PBFDO-F6N as the cathode interface layer for PM6:BTP-eC9-based OSC devices resulted in a remarkable efficiency of 18.11%. Moreover, the device efficiency remained at ∼96% even at a PBFDO-F6N interface thickness of 50 nm, demonstrating the great potential of this material for large-scale device preparation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Design of experiments with the support of machine learning for process parameter optimization of all-small-molecule organic solar cells Bioinspired ultrathin photonic color convertors for highly efficient micro-light-emitting diodes Bimetallic ions modified 2-methylimidazolium functionalized polypyrrole/graphene oxide for the improved supercapacitor Electroconductive hydrogels for bioelectronics: Challenges and opportunities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1