大数检验法

Vladimir Pevnev, Oles Yudin, Peter Sedlaček, Nina Kuchuk
{"title":"大数检验法","authors":"Vladimir Pevnev, Oles Yudin, Peter Sedlaček, Nina Kuchuk","doi":"10.20998/2522-9052.2024.2.11","DOIUrl":null,"url":null,"abstract":"The current stage of scientific and technological development entails ensuring information security across all domains of human activity. Confidential data and wireless channels of remote control systems are particularly sensitive to various types of attacks. In these cases, various encryption systems are most commonly used for information protection, among which large prime numbers are widely utilized. The subject of research involves methods for generating prime numbers, which entail selecting candidates for primality and determining the primality of numbers. The subject of research involves methods for generating prime numbers, which choice selecting candidates for primality and determining the primality of numbers. The objective of the work is the development and theoretical justification of a method for determining the primality of numbers and providing the results of its testing. The aim to address the following main tasks: analyze the most commonly used and latest algorithms, methods, approaches, and tools for primality testing among large numbers; propose and theoretically justify a method for determining primality for large numbers; and conduct its testing. To achieve this aim, general scientific methods have been applied, including analysis of the subject area and mathematical apparatus, utilization of set theory, number theory, fields theory, as well as experimental design for organizing and conducting experimental research. The following results have been obtained: modern methods for selecting candidates for primality testing of large numbers have been analyzed, options for generating large prime numbers have been considered, and the main shortcomings of these methods for practical application of constructed prime numbers have been identified. Methods for determining candidates for primality testing of large numbers and a three-stage method for testing numbers for primality have been proposed and theoretically justified. The testing conducted on the proposed primality determination method has demonstrated the correctness of the theoretical conclusions regarding the feasibility of applying the proposed method to solve the stated problem. Conclusions. The use of a candidate primality testing strategy allows for a significant reduction in the number of tested numbers. For numbers of size 200 digits, the tested numbers is reduced to 8.82%. As the size of the tested numbers increases, their quantity will decrease. The proposed method for primality testing is sufficiently simple and effective. The first two stages allow for filtering out all composite numbers except for Carmichael numbers. In the first stage, using the first ten prime numbers filters out over 80 percent of the tested numbers. In the second stage, composite numbers with factors greater than 29 are sieved out. In the third stage, Carmichael numbers are sieved out. The test is polynomial, deterministic, and unconditional.","PeriodicalId":275587,"journal":{"name":"Advanced Information Systems","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"METHOD OF TESTING LARGE NUMBERS FOR PRIMALITY\",\"authors\":\"Vladimir Pevnev, Oles Yudin, Peter Sedlaček, Nina Kuchuk\",\"doi\":\"10.20998/2522-9052.2024.2.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current stage of scientific and technological development entails ensuring information security across all domains of human activity. Confidential data and wireless channels of remote control systems are particularly sensitive to various types of attacks. In these cases, various encryption systems are most commonly used for information protection, among which large prime numbers are widely utilized. The subject of research involves methods for generating prime numbers, which entail selecting candidates for primality and determining the primality of numbers. The subject of research involves methods for generating prime numbers, which choice selecting candidates for primality and determining the primality of numbers. The objective of the work is the development and theoretical justification of a method for determining the primality of numbers and providing the results of its testing. The aim to address the following main tasks: analyze the most commonly used and latest algorithms, methods, approaches, and tools for primality testing among large numbers; propose and theoretically justify a method for determining primality for large numbers; and conduct its testing. To achieve this aim, general scientific methods have been applied, including analysis of the subject area and mathematical apparatus, utilization of set theory, number theory, fields theory, as well as experimental design for organizing and conducting experimental research. The following results have been obtained: modern methods for selecting candidates for primality testing of large numbers have been analyzed, options for generating large prime numbers have been considered, and the main shortcomings of these methods for practical application of constructed prime numbers have been identified. Methods for determining candidates for primality testing of large numbers and a three-stage method for testing numbers for primality have been proposed and theoretically justified. The testing conducted on the proposed primality determination method has demonstrated the correctness of the theoretical conclusions regarding the feasibility of applying the proposed method to solve the stated problem. Conclusions. The use of a candidate primality testing strategy allows for a significant reduction in the number of tested numbers. For numbers of size 200 digits, the tested numbers is reduced to 8.82%. As the size of the tested numbers increases, their quantity will decrease. The proposed method for primality testing is sufficiently simple and effective. The first two stages allow for filtering out all composite numbers except for Carmichael numbers. In the first stage, using the first ten prime numbers filters out over 80 percent of the tested numbers. In the second stage, composite numbers with factors greater than 29 are sieved out. In the third stage, Carmichael numbers are sieved out. The test is polynomial, deterministic, and unconditional.\",\"PeriodicalId\":275587,\"journal\":{\"name\":\"Advanced Information Systems\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20998/2522-9052.2024.2.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20998/2522-9052.2024.2.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现阶段的科技发展要求确保人类活动各个领域的信息安全。机密数据和远程控制系统的无线信道对各种攻击尤为敏感。在这种情况下,最常用的是各种加密系统来保护信息,其中大质数被广泛使用。研究课题涉及生成质数的方法,其中包括选择候选质数和确定数的质数。研究课题涉及生成质数的方法,其中包括选择质数候选数和确定数的质数。这项工作的目标是开发一种确定数的基元性的方法并从理论上加以论证,同时提供其检验结果。其目的是解决以下主要任务:分析大数中最常用和最新的基元性检验算法、方法、途径和工具;提出一种确定大数基元性的方法并从理论上加以论证;进行检验。为了实现这一目标,我们采用了一般的科学方法,包括分析课题领域和数学仪器,利用集合论、数论、场论以及实验设计来组织和开展实验研究。研究取得了以下成果:分析了选择大数初等性检验候选数的现代方法,考虑了生成大质数的备选方案,并确定了这些方法在构造质数的实际应用中的主要缺点。提出了确定候选质数的方法和检验质数的三阶段方法,并从理论上进行了论证。对所提出的基元性确定方法进行的测试表明,关于应用所提出的方法解决所述问题的可行性的理论结论是正确的。结论使用候选基元性测试策略可以显著减少测试数的数量。对于大小为 200 位的数字,测试数减少到 8.82%。随着测试数大小的增加,其数量也会减少。所提出的原始性检验方法既简单又有效。前两个阶段可以筛选出除卡迈克尔数之外的所有复合数。在第一阶段,使用前十个质数可以过滤掉 80% 以上的测试数。在第二阶段,筛选出因数大于 29 的合数。在第三阶段,筛除卡迈克尔数。该测试是多项式、确定性和无条件的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
METHOD OF TESTING LARGE NUMBERS FOR PRIMALITY
The current stage of scientific and technological development entails ensuring information security across all domains of human activity. Confidential data and wireless channels of remote control systems are particularly sensitive to various types of attacks. In these cases, various encryption systems are most commonly used for information protection, among which large prime numbers are widely utilized. The subject of research involves methods for generating prime numbers, which entail selecting candidates for primality and determining the primality of numbers. The subject of research involves methods for generating prime numbers, which choice selecting candidates for primality and determining the primality of numbers. The objective of the work is the development and theoretical justification of a method for determining the primality of numbers and providing the results of its testing. The aim to address the following main tasks: analyze the most commonly used and latest algorithms, methods, approaches, and tools for primality testing among large numbers; propose and theoretically justify a method for determining primality for large numbers; and conduct its testing. To achieve this aim, general scientific methods have been applied, including analysis of the subject area and mathematical apparatus, utilization of set theory, number theory, fields theory, as well as experimental design for organizing and conducting experimental research. The following results have been obtained: modern methods for selecting candidates for primality testing of large numbers have been analyzed, options for generating large prime numbers have been considered, and the main shortcomings of these methods for practical application of constructed prime numbers have been identified. Methods for determining candidates for primality testing of large numbers and a three-stage method for testing numbers for primality have been proposed and theoretically justified. The testing conducted on the proposed primality determination method has demonstrated the correctness of the theoretical conclusions regarding the feasibility of applying the proposed method to solve the stated problem. Conclusions. The use of a candidate primality testing strategy allows for a significant reduction in the number of tested numbers. For numbers of size 200 digits, the tested numbers is reduced to 8.82%. As the size of the tested numbers increases, their quantity will decrease. The proposed method for primality testing is sufficiently simple and effective. The first two stages allow for filtering out all composite numbers except for Carmichael numbers. In the first stage, using the first ten prime numbers filters out over 80 percent of the tested numbers. In the second stage, composite numbers with factors greater than 29 are sieved out. In the third stage, Carmichael numbers are sieved out. The test is polynomial, deterministic, and unconditional.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MEDOIDS AS A PACKING OF ORB IMAGE DESCRIPTORS THE METHOD OF RANKING EFFECTIVE PROJECT SOLUTIONS IN CONDITIONS OF INCOMPLETE CERTAINTY ENSURING THE FUNCTIONAL STABILITY OF THE INFORMATION SYSTEM OF THE POWER PLANT ON THE BASIS OF MONITORING THE PARAMETERS OF THE WORKING CONDITION OF COMPUTER DEVICES COMPARATIVE ANALYSIS OF SPECTRAL ANOMALIES DETECTION METHODS ON IMAGES FROM ON-BOARD REMOTE SENSING SYSTEMS FPGA-BASED IMPLEMENTATION OF A GAUSSIAN SMOOTHING FILTER WITH POWERS-OF-TWO COEFFICIENTS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1