miR-361-5p/ ORC6/ PLK1 轴调控前列腺癌的进展。

IF 3.3 3区 生物学 Q3 CELL BIOLOGY Experimental cell research Pub Date : 2024-06-15 DOI:10.1016/j.yexcr.2024.114130
Zhiqi Liu , Ying Zhang , Lin Yu , Zhiqiang Zhang , Guangyuan Li
{"title":"miR-361-5p/ ORC6/ PLK1 轴调控前列腺癌的进展。","authors":"Zhiqi Liu ,&nbsp;Ying Zhang ,&nbsp;Lin Yu ,&nbsp;Zhiqiang Zhang ,&nbsp;Guangyuan Li","doi":"10.1016/j.yexcr.2024.114130","DOIUrl":null,"url":null,"abstract":"<div><p>Prostate cancer (PCa) is the most prevalent malignant tumor of the genitourinary system, and metastatic disease has a significant impact on the prognosis of PCa patients. As a result, knowing the processes of PCa development can help patients achieve better outcomes. Here, we investigated the expression and function of ORC6 in PCa. Our findings indicated that ORC6 was elevated in advanced PCa tissues. Patients with PCa who exhibited high levels of ORC6 had a poor prognosis. Following that, we investigated the function of ORC6 in PCa progression using a variety of functional experiments both <em>in vivo</em> and <em>in vitro</em>, and discovered that ORC6 knockdown inhibited PCa cell proliferation, growth, and migration. Furthermore, RNA-seq was employed to examine the molecular mechanism of PCa progression. The results revealed that ORC6 might promote the expression of PLK1, a serine/threonine kinase in PCa cells. We also discovered that ORC6 as a novel miR-361-5p substrate using database analysis, and miR-361-5p was found to lower ORC6 expression. Additionally, RNA immunoprecipitation (RIP) and luciferase reporter tests revealed that the transcription factor E2F1 could regulate ORC6 expression in PCa cells. PLK1 overexpression or miR-361-5p inhibitor treatment effectively removed the inhibitory effects caused by ORC6 silencing. Notably, our data showed that therapeutically targeting the miR-361-5p<strong>/</strong>ORC6<strong>/</strong>PLK1 axis may be a viable therapy option for PCa.</p></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A miR-361-5p/ ORC6/ PLK1 axis regulates prostate cancer progression\",\"authors\":\"Zhiqi Liu ,&nbsp;Ying Zhang ,&nbsp;Lin Yu ,&nbsp;Zhiqiang Zhang ,&nbsp;Guangyuan Li\",\"doi\":\"10.1016/j.yexcr.2024.114130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Prostate cancer (PCa) is the most prevalent malignant tumor of the genitourinary system, and metastatic disease has a significant impact on the prognosis of PCa patients. As a result, knowing the processes of PCa development can help patients achieve better outcomes. Here, we investigated the expression and function of ORC6 in PCa. Our findings indicated that ORC6 was elevated in advanced PCa tissues. Patients with PCa who exhibited high levels of ORC6 had a poor prognosis. Following that, we investigated the function of ORC6 in PCa progression using a variety of functional experiments both <em>in vivo</em> and <em>in vitro</em>, and discovered that ORC6 knockdown inhibited PCa cell proliferation, growth, and migration. Furthermore, RNA-seq was employed to examine the molecular mechanism of PCa progression. The results revealed that ORC6 might promote the expression of PLK1, a serine/threonine kinase in PCa cells. We also discovered that ORC6 as a novel miR-361-5p substrate using database analysis, and miR-361-5p was found to lower ORC6 expression. Additionally, RNA immunoprecipitation (RIP) and luciferase reporter tests revealed that the transcription factor E2F1 could regulate ORC6 expression in PCa cells. PLK1 overexpression or miR-361-5p inhibitor treatment effectively removed the inhibitory effects caused by ORC6 silencing. Notably, our data showed that therapeutically targeting the miR-361-5p<strong>/</strong>ORC6<strong>/</strong>PLK1 axis may be a viable therapy option for PCa.</p></div>\",\"PeriodicalId\":12227,\"journal\":{\"name\":\"Experimental cell research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental cell research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014482724002210\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014482724002210","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

前列腺癌(PCa)是泌尿生殖系统最常见的恶性肿瘤,转移性疾病对 PCa 患者的预后有重大影响。因此,了解 PCa 的发展过程有助于患者获得更好的预后。在此,我们研究了ORC6在PCa中的表达和功能。我们的研究结果表明,ORC6在晚期PCa组织中升高。表现出高水平 ORC6 的 PCa 患者预后较差。随后,我们利用各种体内和体外功能实验研究了 ORC6 在 PCa 进展中的功能,发现 ORC6 基因敲除可抑制 PCa 细胞的增殖、生长和迁移。此外,研究人员还利用RNA-seq技术研究了PCa进展的分子机制。结果发现,ORC6可能会促进PCa细胞中丝氨酸/苏氨酸激酶PLK1的表达。我们还通过数据库分析发现,ORC6是一种新型的miR-361-5p底物,而miR-361-5p能降低ORC6的表达。此外,RNA免疫沉淀(RIP)和荧光素酶报告试验显示,转录因子E2F1可调控PCa细胞中ORC6的表达。PLK1过表达或miR-361-5p抑制剂能有效消除ORC6沉默引起的抑制作用。值得注意的是,我们的数据表明,针对miR-361-5p/ORC6/PLK1轴的治疗可能是治疗PCa的一种可行方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A miR-361-5p/ ORC6/ PLK1 axis regulates prostate cancer progression

Prostate cancer (PCa) is the most prevalent malignant tumor of the genitourinary system, and metastatic disease has a significant impact on the prognosis of PCa patients. As a result, knowing the processes of PCa development can help patients achieve better outcomes. Here, we investigated the expression and function of ORC6 in PCa. Our findings indicated that ORC6 was elevated in advanced PCa tissues. Patients with PCa who exhibited high levels of ORC6 had a poor prognosis. Following that, we investigated the function of ORC6 in PCa progression using a variety of functional experiments both in vivo and in vitro, and discovered that ORC6 knockdown inhibited PCa cell proliferation, growth, and migration. Furthermore, RNA-seq was employed to examine the molecular mechanism of PCa progression. The results revealed that ORC6 might promote the expression of PLK1, a serine/threonine kinase in PCa cells. We also discovered that ORC6 as a novel miR-361-5p substrate using database analysis, and miR-361-5p was found to lower ORC6 expression. Additionally, RNA immunoprecipitation (RIP) and luciferase reporter tests revealed that the transcription factor E2F1 could regulate ORC6 expression in PCa cells. PLK1 overexpression or miR-361-5p inhibitor treatment effectively removed the inhibitory effects caused by ORC6 silencing. Notably, our data showed that therapeutically targeting the miR-361-5p/ORC6/PLK1 axis may be a viable therapy option for PCa.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental cell research
Experimental cell research 医学-细胞生物学
CiteScore
7.20
自引率
0.00%
发文量
295
审稿时长
30 days
期刊介绍: Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.
期刊最新文献
A novel molecular target, superoxide dismutase 1, in ALK inhibitor-resistant lung cancer cells, detected through proteomic analysis Excess glucose alone induces hepatocyte damage due to oxidative stress and endoplasmic reticulum stress Investigation of the regulation of EGF signaling by miRNAs, delving into the underlying mechanism and signaling pathways in cancer Influence of mesenchymal stem cells from different origins on the therapeutic effectiveness of systemic lupus erythematosus m6A methyltransferase ZC3H13 improves pulmonary fibrosis in mice through regulating Bax expression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1