{"title":"玻璃体世界之旅","authors":"","doi":"10.1016/j.survophthal.2024.06.004","DOIUrl":null,"url":null,"abstract":"<div><p>Vitreous, one of the largest components of the human eye, mostly contains water. Despite decades of studying the vitreous structure, numerous unanswered questions still remain, fueling ongoing active research. We attempt to provide a comprehensive overview of the current understanding of the development, morphology, biochemical composition, and function of the vitreous. We emphasize the impact of the vitreous structure and composition on the distribution of drugs. Fast-developing imaging technologies, such as modern optical coherence tomography, unlocked multiple new approaches, offering the potential for <em>in vivo</em> study of the vitreous structure. They allowed to analyze <em>in vivo</em> a range of vitreous structures, such as posterior precortical vitreous pockets, Cloquet canal, channels that interconnect them, perivascular vitreous fissures, and cisterns. We provide an overview of such imaging techniques and their principles and of some challenges in visualizing vitreous structures. Finally, we explores the potential of combining the latest technologies and machine learning to enhance our understanding of vitreous structures.</p></div>","PeriodicalId":22102,"journal":{"name":"Survey of ophthalmology","volume":"69 6","pages":"Pages 957-966"},"PeriodicalIF":5.1000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0039625724000705/pdfft?md5=0b104d701bf1b0d59cdb60e9360bcfa8&pid=1-s2.0-S0039625724000705-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A journey through the world of vitreous\",\"authors\":\"\",\"doi\":\"10.1016/j.survophthal.2024.06.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Vitreous, one of the largest components of the human eye, mostly contains water. Despite decades of studying the vitreous structure, numerous unanswered questions still remain, fueling ongoing active research. We attempt to provide a comprehensive overview of the current understanding of the development, morphology, biochemical composition, and function of the vitreous. We emphasize the impact of the vitreous structure and composition on the distribution of drugs. Fast-developing imaging technologies, such as modern optical coherence tomography, unlocked multiple new approaches, offering the potential for <em>in vivo</em> study of the vitreous structure. They allowed to analyze <em>in vivo</em> a range of vitreous structures, such as posterior precortical vitreous pockets, Cloquet canal, channels that interconnect them, perivascular vitreous fissures, and cisterns. We provide an overview of such imaging techniques and their principles and of some challenges in visualizing vitreous structures. Finally, we explores the potential of combining the latest technologies and machine learning to enhance our understanding of vitreous structures.</p></div>\",\"PeriodicalId\":22102,\"journal\":{\"name\":\"Survey of ophthalmology\",\"volume\":\"69 6\",\"pages\":\"Pages 957-966\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0039625724000705/pdfft?md5=0b104d701bf1b0d59cdb60e9360bcfa8&pid=1-s2.0-S0039625724000705-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Survey of ophthalmology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0039625724000705\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Survey of ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039625724000705","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Vitreous, one of the largest components of the human eye, mostly contains water. Despite decades of studying the vitreous structure, numerous unanswered questions still remain, fueling ongoing active research. We attempt to provide a comprehensive overview of the current understanding of the development, morphology, biochemical composition, and function of the vitreous. We emphasize the impact of the vitreous structure and composition on the distribution of drugs. Fast-developing imaging technologies, such as modern optical coherence tomography, unlocked multiple new approaches, offering the potential for in vivo study of the vitreous structure. They allowed to analyze in vivo a range of vitreous structures, such as posterior precortical vitreous pockets, Cloquet canal, channels that interconnect them, perivascular vitreous fissures, and cisterns. We provide an overview of such imaging techniques and their principles and of some challenges in visualizing vitreous structures. Finally, we explores the potential of combining the latest technologies and machine learning to enhance our understanding of vitreous structures.
期刊介绍:
Survey of Ophthalmology is a clinically oriented review journal designed to keep ophthalmologists up to date. Comprehensive major review articles, written by experts and stringently refereed, integrate the literature on subjects selected for their clinical importance. Survey also includes feature articles, section reviews, book reviews, and abstracts.