{"title":"本体集成调整大型语言模型,实现智能维护","authors":"","doi":"10.1016/j.cirp.2024.04.012","DOIUrl":null,"url":null,"abstract":"<div><p>As new AI technologies such as Large Language Models (LLM) quickly evolve, the need for enhancing general-purpose LLMs with physical knowledge to better serve the manufacturing community has been increasingly recognized. This paper presents a method that tailors GPT-3.5 with domain-specific knowledge for intelligent aircraft maintenance. Specifically, aircraft ontology is investigated to curate maintenance logs with encoded component hierarchical structure to fine-tune GPT-3.5. Experimental results demonstrate the effectiveness of the developed method in accurately identifying defective components and providing consistent maintenance action recommendations, outperforming general-purpose GPT-3.5 and GPT-4.0. The method can be adapted to other domains in manufacturing and beyond.</p></div>","PeriodicalId":55256,"journal":{"name":"Cirp Annals-Manufacturing Technology","volume":"73 1","pages":"Pages 361-364"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S000785062400026X/pdfft?md5=b2a97d72d7c00a478fa38af78f8c24e3&pid=1-s2.0-S000785062400026X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Ontology-integrated tuning of large language model for intelligent maintenance\",\"authors\":\"\",\"doi\":\"10.1016/j.cirp.2024.04.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As new AI technologies such as Large Language Models (LLM) quickly evolve, the need for enhancing general-purpose LLMs with physical knowledge to better serve the manufacturing community has been increasingly recognized. This paper presents a method that tailors GPT-3.5 with domain-specific knowledge for intelligent aircraft maintenance. Specifically, aircraft ontology is investigated to curate maintenance logs with encoded component hierarchical structure to fine-tune GPT-3.5. Experimental results demonstrate the effectiveness of the developed method in accurately identifying defective components and providing consistent maintenance action recommendations, outperforming general-purpose GPT-3.5 and GPT-4.0. The method can be adapted to other domains in manufacturing and beyond.</p></div>\",\"PeriodicalId\":55256,\"journal\":{\"name\":\"Cirp Annals-Manufacturing Technology\",\"volume\":\"73 1\",\"pages\":\"Pages 361-364\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S000785062400026X/pdfft?md5=b2a97d72d7c00a478fa38af78f8c24e3&pid=1-s2.0-S000785062400026X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cirp Annals-Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S000785062400026X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cirp Annals-Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000785062400026X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Ontology-integrated tuning of large language model for intelligent maintenance
As new AI technologies such as Large Language Models (LLM) quickly evolve, the need for enhancing general-purpose LLMs with physical knowledge to better serve the manufacturing community has been increasingly recognized. This paper presents a method that tailors GPT-3.5 with domain-specific knowledge for intelligent aircraft maintenance. Specifically, aircraft ontology is investigated to curate maintenance logs with encoded component hierarchical structure to fine-tune GPT-3.5. Experimental results demonstrate the effectiveness of the developed method in accurately identifying defective components and providing consistent maintenance action recommendations, outperforming general-purpose GPT-3.5 and GPT-4.0. The method can be adapted to other domains in manufacturing and beyond.
期刊介绍:
CIRP, The International Academy for Production Engineering, was founded in 1951 to promote, by scientific research, the development of all aspects of manufacturing technology covering the optimization, control and management of processes, machines and systems.
This biannual ISI cited journal contains approximately 140 refereed technical and keynote papers. Subject areas covered include:
Assembly, Cutting, Design, Electro-Physical and Chemical Processes, Forming, Abrasive processes, Surfaces, Machines, Production Systems and Organizations, Precision Engineering and Metrology, Life-Cycle Engineering, Microsystems Technology (MST), Nanotechnology.