精确测量稀土元素支化分数的空心阴极灯的特性。

IF 1.5 4区 物理与天体物理 Q3 OPTICS The European Physical Journal D Pub Date : 2024-06-14 DOI:10.1140/epjd/s10053-024-00868-w
Pratyush Ranjan Sen Sarma, Maria Teresa Belmonte, Santiago Mar
{"title":"精确测量稀土元素支化分数的空心阴极灯的特性。","authors":"Pratyush Ranjan Sen Sarma,&nbsp;Maria Teresa Belmonte,&nbsp;Santiago Mar","doi":"10.1140/epjd/s10053-024-00868-w","DOIUrl":null,"url":null,"abstract":"<p>This work describes the tests performed with a newly built hollow-cathode lamp to ensure its capability to measure atomic parameters such as transition probabilities accurately. We discuss the design of the lamp and the experimental setup that will be used to measure transition probabilities. We show the discharge characteristics of the lamp and also the stability of spectral emission of the lamp over a period of two hours. Finally, it is concluded that the experimental setup, the lamp, and a camera with high resolving power are well suited for the measurement of the transition probabilities of doubly ionised rare-earths like Nd III.</p><p>Graphical abstract illustrating the use of a hollow-cathode lamp setup for accurately measuring branching fractions of rare-earth elements. The setup includes a diffraction grating spectrometer and a CMOS camera to detect radiation across a spectral range of 200 nm to 800 nm with a resolving power of 150,000 at 450 nm</p>","PeriodicalId":789,"journal":{"name":"The European Physical Journal D","volume":"78 6","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjd/s10053-024-00868-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Characterisation of a hollow-cathode lamp to measure accurate branching fractions of rare-earth elements.\",\"authors\":\"Pratyush Ranjan Sen Sarma,&nbsp;Maria Teresa Belmonte,&nbsp;Santiago Mar\",\"doi\":\"10.1140/epjd/s10053-024-00868-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work describes the tests performed with a newly built hollow-cathode lamp to ensure its capability to measure atomic parameters such as transition probabilities accurately. We discuss the design of the lamp and the experimental setup that will be used to measure transition probabilities. We show the discharge characteristics of the lamp and also the stability of spectral emission of the lamp over a period of two hours. Finally, it is concluded that the experimental setup, the lamp, and a camera with high resolving power are well suited for the measurement of the transition probabilities of doubly ionised rare-earths like Nd III.</p><p>Graphical abstract illustrating the use of a hollow-cathode lamp setup for accurately measuring branching fractions of rare-earth elements. The setup includes a diffraction grating spectrometer and a CMOS camera to detect radiation across a spectral range of 200 nm to 800 nm with a resolving power of 150,000 at 450 nm</p>\",\"PeriodicalId\":789,\"journal\":{\"name\":\"The European Physical Journal D\",\"volume\":\"78 6\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjd/s10053-024-00868-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal D\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjd/s10053-024-00868-w\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal D","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjd/s10053-024-00868-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

这项工作介绍了对新制造的空心阴极灯进行的测试,以确保其能够准确测量原子参数,如跃迁概率。我们讨论了灯的设计和用于测量跃迁概率的实验装置。我们展示了灯的放电特性,以及灯在两小时内光谱发射的稳定性。最后,我们得出结论,实验装置、灯管和具有高分辨率的照相机非常适合测量双电离稀土(如钕)的跃迁概率。该装置包括一个衍射光栅光谱仪和一个 CMOS 相机,用于探测 200 纳米到 800 纳米光谱范围内的辐射,450 纳米分辨率为 150,000 分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterisation of a hollow-cathode lamp to measure accurate branching fractions of rare-earth elements.

This work describes the tests performed with a newly built hollow-cathode lamp to ensure its capability to measure atomic parameters such as transition probabilities accurately. We discuss the design of the lamp and the experimental setup that will be used to measure transition probabilities. We show the discharge characteristics of the lamp and also the stability of spectral emission of the lamp over a period of two hours. Finally, it is concluded that the experimental setup, the lamp, and a camera with high resolving power are well suited for the measurement of the transition probabilities of doubly ionised rare-earths like Nd III.

Graphical abstract illustrating the use of a hollow-cathode lamp setup for accurately measuring branching fractions of rare-earth elements. The setup includes a diffraction grating spectrometer and a CMOS camera to detect radiation across a spectral range of 200 nm to 800 nm with a resolving power of 150,000 at 450 nm

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal D
The European Physical Journal D 物理-物理:原子、分子和化学物理
CiteScore
3.10
自引率
11.10%
发文量
213
审稿时长
3 months
期刊介绍: The European Physical Journal D (EPJ D) presents new and original research results in: Atomic Physics; Molecular Physics and Chemical Physics; Atomic and Molecular Collisions; Clusters and Nanostructures; Plasma Physics; Laser Cooling and Quantum Gas; Nonlinear Dynamics; Optical Physics; Quantum Optics and Quantum Information; Ultraintense and Ultrashort Laser Fields. The range of topics covered in these areas is extensive, from Molecular Interaction and Reactivity to Spectroscopy and Thermodynamics of Clusters, from Atomic Optics to Bose-Einstein Condensation to Femtochemistry.
期刊最新文献
A molecular dynamics simulation framework for investigating ionizing radiation-induced nano-bubble interactions at ultra-high dose rates Ionization of argon atom by positron and electron impact Discharge characteristics and ozone generation during CO2 to CO conversion by dielectric barrier discharge packed with TiO2-coated glass beads Correction: Gravitational force-induced changes in collisionless shock wave behavior in a charge-varying nonthermal dusty plasma Characteristics, implementation, and applications of special perfect entanglers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1