基于蛾焰优化算法的混合平衡优化器解决全局优化问题

IF 3.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Artificial Intelligence and Soft Computing Research Pub Date : 2024-06-01 DOI:10.2478/jaiscr-2024-0012
Zongshan Wang, Ali Ala, Zekui Liu, Wei Cui, Hongwei Ding, Gushen Jin, Xu Lu
{"title":"基于蛾焰优化算法的混合平衡优化器解决全局优化问题","authors":"Zongshan Wang, Ali Ala, Zekui Liu, Wei Cui, Hongwei Ding, Gushen Jin, Xu Lu","doi":"10.2478/jaiscr-2024-0012","DOIUrl":null,"url":null,"abstract":"Abstract Equilibrium optimizer (EO) is a novel metaheuristic algorithm that exhibits superior performance in solving global optimization problems, but it may encounter drawbacks such as imbalance between exploration and exploitation capabilities, and tendency to fall into local optimization in tricky multimodal problems. In order to address these problems, this study proposes a novel ensemble algorithm called hybrid moth equilibrium optimizer (HMEO), leveraging both the moth flame optimization (MFO) and EO. The proposed approach first integrates the exploitation potential of EO and then introduces the exploration capability of MFO to help enhance global search, local fine-tuning, and an appropriate balance during the search process. To verify the performance of the proposed hybrid algorithm, the suggested HMEO is applied on 29 test functions of the CEC 2017 benchmark test suite. The test results of the developed method are compared with several well-known metaheuristics, including the basic EO, the basic MFO, and some popular EO and MFO variants. Friedman rank test is employed to measure the performance of the newly proposed algorithm statistically. Moreover, the introduced method has been applied to address the mobile robot path planning (MRPP) problem to investigate its problem-solving ability of real-world problems. The experimental results show that the reported HMEO algorithm is superior to the comparative approaches.","PeriodicalId":48494,"journal":{"name":"Journal of Artificial Intelligence and Soft Computing Research","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hybrid Equilibrium Optimizer Based on Moth Flame Optimization Algorithm to Solve Global Optimization Problems\",\"authors\":\"Zongshan Wang, Ali Ala, Zekui Liu, Wei Cui, Hongwei Ding, Gushen Jin, Xu Lu\",\"doi\":\"10.2478/jaiscr-2024-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Equilibrium optimizer (EO) is a novel metaheuristic algorithm that exhibits superior performance in solving global optimization problems, but it may encounter drawbacks such as imbalance between exploration and exploitation capabilities, and tendency to fall into local optimization in tricky multimodal problems. In order to address these problems, this study proposes a novel ensemble algorithm called hybrid moth equilibrium optimizer (HMEO), leveraging both the moth flame optimization (MFO) and EO. The proposed approach first integrates the exploitation potential of EO and then introduces the exploration capability of MFO to help enhance global search, local fine-tuning, and an appropriate balance during the search process. To verify the performance of the proposed hybrid algorithm, the suggested HMEO is applied on 29 test functions of the CEC 2017 benchmark test suite. The test results of the developed method are compared with several well-known metaheuristics, including the basic EO, the basic MFO, and some popular EO and MFO variants. Friedman rank test is employed to measure the performance of the newly proposed algorithm statistically. Moreover, the introduced method has been applied to address the mobile robot path planning (MRPP) problem to investigate its problem-solving ability of real-world problems. The experimental results show that the reported HMEO algorithm is superior to the comparative approaches.\",\"PeriodicalId\":48494,\"journal\":{\"name\":\"Journal of Artificial Intelligence and Soft Computing Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence and Soft Computing Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.2478/jaiscr-2024-0012\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Soft Computing Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2478/jaiscr-2024-0012","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

摘要 平衡优化器(EO)是一种新型的元启发式算法,在解决全局优化问题时表现出卓越的性能,但它可能会遇到一些缺点,如探索和利用能力不平衡,以及在棘手的多模式问题中容易陷入局部优化等。为了解决这些问题,本研究提出了一种名为混合蛾式均衡优化器(HMEO)的新型集合算法,同时利用蛾焰优化(MFO)和EO。所提出的方法首先整合了 EO 的开发潜力,然后引入 MFO 的探索能力,以帮助增强全局搜索、局部微调以及搜索过程中的适当平衡。为了验证所提混合算法的性能,建议的 HMEO 被应用于 CEC 2017 基准测试套件的 29 个测试函数。所开发方法的测试结果与几种著名的元启发式算法进行了比较,包括基本 EO、基本 MFO 以及一些流行的 EO 和 MFO 变体。弗里德曼秩检验用于统计衡量新提出算法的性能。此外,引入的方法还被用于解决移动机器人路径规划(MRPP)问题,以考察其解决实际问题的能力。实验结果表明,所报告的 HMEO 算法优于比较方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Hybrid Equilibrium Optimizer Based on Moth Flame Optimization Algorithm to Solve Global Optimization Problems
Abstract Equilibrium optimizer (EO) is a novel metaheuristic algorithm that exhibits superior performance in solving global optimization problems, but it may encounter drawbacks such as imbalance between exploration and exploitation capabilities, and tendency to fall into local optimization in tricky multimodal problems. In order to address these problems, this study proposes a novel ensemble algorithm called hybrid moth equilibrium optimizer (HMEO), leveraging both the moth flame optimization (MFO) and EO. The proposed approach first integrates the exploitation potential of EO and then introduces the exploration capability of MFO to help enhance global search, local fine-tuning, and an appropriate balance during the search process. To verify the performance of the proposed hybrid algorithm, the suggested HMEO is applied on 29 test functions of the CEC 2017 benchmark test suite. The test results of the developed method are compared with several well-known metaheuristics, including the basic EO, the basic MFO, and some popular EO and MFO variants. Friedman rank test is employed to measure the performance of the newly proposed algorithm statistically. Moreover, the introduced method has been applied to address the mobile robot path planning (MRPP) problem to investigate its problem-solving ability of real-world problems. The experimental results show that the reported HMEO algorithm is superior to the comparative approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Artificial Intelligence and Soft Computing Research
Journal of Artificial Intelligence and Soft Computing Research COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
7.00
自引率
25.00%
发文量
10
审稿时长
24 weeks
期刊介绍: Journal of Artificial Intelligence and Soft Computing Research (available also at Sciendo (De Gruyter)) is a dynamically developing international journal focused on the latest scientific results and methods constituting traditional artificial intelligence methods and soft computing techniques. Our goal is to bring together scientists representing both approaches and various research communities.
期刊最新文献
Sinextnet: A New Small Object Detection Model for Aerial Images Based on PP-Yoloe A Hybrid Equilibrium Optimizer Based on Moth Flame Optimization Algorithm to Solve Global Optimization Problems Optimizing the Structures of Transformer Neural Networks Using Parallel Simulated Annealing Ranking of Alternatives Described by Atanassov’s Intuitionistic Fuzzy Sets – Reconciling Some Misunderstandings Shufflemono: Rethinking Lightweight Network for Self-Supervised Monocular Depth Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1