亚硝酸盐驱动的厌氧乙烷氧化作用

IF 14 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Environmental Science and Ecotechnology Pub Date : 2024-06-13 DOI:10.1016/j.ese.2024.100438
Cheng-Cheng Dang , Yin-Zhu Jin , Xin Tan , Wen-Bo Nie , Yang Lu , Bing-Feng Liu , De-Feng Xing , Nan-Qi Ren , Guo-Jun Xie
{"title":"亚硝酸盐驱动的厌氧乙烷氧化作用","authors":"Cheng-Cheng Dang ,&nbsp;Yin-Zhu Jin ,&nbsp;Xin Tan ,&nbsp;Wen-Bo Nie ,&nbsp;Yang Lu ,&nbsp;Bing-Feng Liu ,&nbsp;De-Feng Xing ,&nbsp;Nan-Qi Ren ,&nbsp;Guo-Jun Xie","doi":"10.1016/j.ese.2024.100438","DOIUrl":null,"url":null,"abstract":"<div><p>Ethane, the second most abundant gaseous hydrocarbon in vast anoxic environments, is an overlooked greenhouse gas. Microbial anaerobic oxidation of ethane can be driven by available electron acceptors such as sulfate and nitrate. However, despite nitrite being a more thermodynamically feasible electron acceptor than sulfate or nitrate, little is known about nitrite-driven anaerobic ethane oxidation. In this study, a microbial culture capable of nitrite-driven anaerobic ethane oxidation was enriched through the long-term operation of a nitrite-and-ethane-fed bioreactor. During continuous operation, the nitrite removal rate and the theoretical ethane oxidation rate remained stable at approximately 25.0 mg NO<sub>2</sub><sup>–</sup>N L<sup>−1</sup> d<sup>−1</sup> and 11.48 mg C<sub>2</sub>H<sub>6</sub> L<sup>−1</sup> d<sup>−1</sup>, respectively. Batch tests demonstrated that ethane is essential for nitrite removal in this microbial culture. Metabolic function analysis revealed that a species affiliated with a novel genus within the family Rhodocyclaceae, designated as '<em>Candidatus</em> Alkanivoras nitrosoreducens', may perform the nitrite-driven anaerobic ethane oxidation. In the proposed metabolic model, despite the absence of known genes for ethane conversion to ethyl-succinate and succinate-CoA ligase, '<em>Ca</em>. A. nitrosoreducens' encodes a prospective fumarate addition pathway for anaerobic ethane oxidation and a complete denitrification pathway for nitrite reduction to nitrogen. These findings advance our understanding of nitrite-driven anaerobic ethane oxidation, highlighting the previously overlooked impact of anaerobic ethane oxidation in natural ecosystems.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":null,"pages":null},"PeriodicalIF":14.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000528/pdfft?md5=dfae899e89f6f60f9a583213ab0f39ec&pid=1-s2.0-S2666498424000528-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Nitrite-driven anaerobic ethane oxidation\",\"authors\":\"Cheng-Cheng Dang ,&nbsp;Yin-Zhu Jin ,&nbsp;Xin Tan ,&nbsp;Wen-Bo Nie ,&nbsp;Yang Lu ,&nbsp;Bing-Feng Liu ,&nbsp;De-Feng Xing ,&nbsp;Nan-Qi Ren ,&nbsp;Guo-Jun Xie\",\"doi\":\"10.1016/j.ese.2024.100438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ethane, the second most abundant gaseous hydrocarbon in vast anoxic environments, is an overlooked greenhouse gas. Microbial anaerobic oxidation of ethane can be driven by available electron acceptors such as sulfate and nitrate. However, despite nitrite being a more thermodynamically feasible electron acceptor than sulfate or nitrate, little is known about nitrite-driven anaerobic ethane oxidation. In this study, a microbial culture capable of nitrite-driven anaerobic ethane oxidation was enriched through the long-term operation of a nitrite-and-ethane-fed bioreactor. During continuous operation, the nitrite removal rate and the theoretical ethane oxidation rate remained stable at approximately 25.0 mg NO<sub>2</sub><sup>–</sup>N L<sup>−1</sup> d<sup>−1</sup> and 11.48 mg C<sub>2</sub>H<sub>6</sub> L<sup>−1</sup> d<sup>−1</sup>, respectively. Batch tests demonstrated that ethane is essential for nitrite removal in this microbial culture. Metabolic function analysis revealed that a species affiliated with a novel genus within the family Rhodocyclaceae, designated as '<em>Candidatus</em> Alkanivoras nitrosoreducens', may perform the nitrite-driven anaerobic ethane oxidation. In the proposed metabolic model, despite the absence of known genes for ethane conversion to ethyl-succinate and succinate-CoA ligase, '<em>Ca</em>. A. nitrosoreducens' encodes a prospective fumarate addition pathway for anaerobic ethane oxidation and a complete denitrification pathway for nitrite reduction to nitrogen. These findings advance our understanding of nitrite-driven anaerobic ethane oxidation, highlighting the previously overlooked impact of anaerobic ethane oxidation in natural ecosystems.</p></div>\",\"PeriodicalId\":34434,\"journal\":{\"name\":\"Environmental Science and Ecotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666498424000528/pdfft?md5=dfae899e89f6f60f9a583213ab0f39ec&pid=1-s2.0-S2666498424000528-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science and Ecotechnology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666498424000528\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666498424000528","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

乙烷是广阔缺氧环境中含量第二高的气态碳氢化合物,是一种被忽视的温室气体。可用的电子受体(如硫酸盐和硝酸盐)可推动乙烷的微生物厌氧氧化。然而,尽管亚硝酸盐是热力学上比硫酸盐或硝酸盐更可行的电子受体,但人们对亚硝酸盐驱动的厌氧乙烷氧化却知之甚少。在本研究中,通过长期运行亚硝酸盐和乙烷喂养生物反应器,丰富了能够进行亚硝酸盐驱动厌氧乙烷氧化的微生物培养。在连续运行期间,亚硝酸盐去除率和理论乙烷氧化率分别稳定在约 25.0 mg NO2-N L-1 d-1 和 11.48 mg C2H6 L-1 d-1。批量试验表明,乙烷对该微生物培养物去除亚硝酸盐至关重要。代谢功能分析显示,一种隶属于 Rhodocyclaceae 家族中一个新属(命名为 "Candidatus Alkanivoras nitrosoreducens")的物种可能会进行亚硝酸盐驱动的厌氧乙烷氧化。在所提出的代谢模型中,尽管没有已知的乙烷转化为乙基琥珀酸和琥珀酸-CoA 连接酶的基因,但'Ca.A.nitrosoreducens'编码了一条用于厌氧乙烷氧化的富马酸添加途径和一条用于将亚硝酸盐还原为氮的完整反硝化途径。这些发现增进了我们对亚硝酸盐驱动的厌氧乙烷氧化作用的了解,凸显了厌氧乙烷氧化作用在自然生态系统中的影响以前曾被忽视。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nitrite-driven anaerobic ethane oxidation

Ethane, the second most abundant gaseous hydrocarbon in vast anoxic environments, is an overlooked greenhouse gas. Microbial anaerobic oxidation of ethane can be driven by available electron acceptors such as sulfate and nitrate. However, despite nitrite being a more thermodynamically feasible electron acceptor than sulfate or nitrate, little is known about nitrite-driven anaerobic ethane oxidation. In this study, a microbial culture capable of nitrite-driven anaerobic ethane oxidation was enriched through the long-term operation of a nitrite-and-ethane-fed bioreactor. During continuous operation, the nitrite removal rate and the theoretical ethane oxidation rate remained stable at approximately 25.0 mg NO2N L−1 d−1 and 11.48 mg C2H6 L−1 d−1, respectively. Batch tests demonstrated that ethane is essential for nitrite removal in this microbial culture. Metabolic function analysis revealed that a species affiliated with a novel genus within the family Rhodocyclaceae, designated as 'Candidatus Alkanivoras nitrosoreducens', may perform the nitrite-driven anaerobic ethane oxidation. In the proposed metabolic model, despite the absence of known genes for ethane conversion to ethyl-succinate and succinate-CoA ligase, 'Ca. A. nitrosoreducens' encodes a prospective fumarate addition pathway for anaerobic ethane oxidation and a complete denitrification pathway for nitrite reduction to nitrogen. These findings advance our understanding of nitrite-driven anaerobic ethane oxidation, highlighting the previously overlooked impact of anaerobic ethane oxidation in natural ecosystems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
20.40
自引率
6.30%
发文量
11
审稿时长
18 days
期刊介绍: Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.
期刊最新文献
Trusted artificial intelligence for environmental assessments: An explainable high-precision model with multi-source big data Hydrodynamic and trophic variations reshape macroinvertebrate food webs in urban ecosystems Wintertime ozone surges: The critical role of alkene ozonolysis Stability of sedimentary organic matter: Insights from molecular and redox analyses Characterizing PFASs in aquatic ecosystems with 3D hydrodynamic and water quality models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1