注入 N2/CO2 对含 CH4 煤岩中 O2 解吸的影响

IF 0.8 4区 工程技术 Q4 CHEMISTRY, MULTIDISCIPLINARY Solid Fuel Chemistry Pub Date : 2024-06-05 DOI:10.3103/S0361521924700010
Zong Xiang Li, Cheng Wang, Cong Ding
{"title":"注入 N2/CO2 对含 CH4 煤岩中 O2 解吸的影响","authors":"Zong Xiang Li,&nbsp;Cheng Wang,&nbsp;Cong Ding","doi":"10.3103/S0361521924700010","DOIUrl":null,"url":null,"abstract":"<p>To investigate the desorption behavior of O<sub>2</sub> through CO<sub>2</sub>/N<sub>2</sub> injection in the gob of a gassing mine, we focused on the adsorption configuration of coal containing O<sub>2</sub>–CH<sub>4</sub>. The mechanism underlying the enhancement of O<sub>2</sub> desorption in coal due to CO<sub>2</sub>/N<sub>2</sub> injection was elucidated using the Grand Canonical Ensemble Monte Carlo (GCMC) and Molecular Dynamics (MD) methods. Furthermore, the impact of CH<sub>4</sub> on O<sub>2</sub> desorption was unveiled by detailed calculations and studies of energy variation, concentration distribution, and diffusion coefficients of oxygen.Our findings indicate the following: (1) CO<sub>2</sub> and N<sub>2</sub> facilitate the displacement of oxygen primarily by occupying adsorption sites. The CO<sub>2</sub>–O<sub>2</sub> model exhibits a significantly higher concentration of free O<sub>2</sub> molecules compared to the N<sub>2</sub>–O<sub>2</sub> model, and the CO<sub>2</sub>–O<sub>2</sub>–CH<sub>4</sub> model surpasses the N<sub>2</sub>–O<sub>2</sub>–CH<sub>4</sub> model in free O<sub>2</sub> molecules. (2) The total energy of the CO<sub>2</sub>–O<sub>2</sub> model is lower than that of the N<sub>2</sub>–O<sub>2</sub> model, indicating greater stability in the former. Similarly, the total energy of the CO<sub>2</sub>–O<sub>2</sub>–CH<sub>4</sub> model is lower than that of the N<sub>2</sub>–O<sub>2</sub>–CH<sub>4</sub> model, highlighting its superior stability. It is concluded that CO<sub>2</sub> injection is more effective in promoting oxygen desorption than N<sub>2</sub>, regardless of the presence of methane. (3) Under equivalent injection pressure, the root mean square displacement of O<sub>2</sub> in the CO<sub>2</sub>–O<sub>2</sub> system surpasses that in the N<sub>2</sub>–O<sub>2</sub> system. Furthermore, compared to the N<sub>2</sub>–O<sub>2</sub>–CH<sub>4</sub> system, the CO<sub>2</sub>–O<sub>2</sub>–CH<sub>4</sub> system exhibits a larger root mean square displacement of O<sub>2</sub>, signifying higher O<sub>2</sub> molecule activity. The diffusion coefficient of O<sub>2</sub> in the CO<sub>2</sub>–O<sub>2</sub> system is higher, underscoring the superior effectiveness of CO<sub>2</sub> in promoting O<sub>2</sub> desorption.In summary, our research outcomes offer valuable theoretical insights for fire prevention technology in goaf.</p>","PeriodicalId":779,"journal":{"name":"Solid Fuel Chemistry","volume":"58 3","pages":"232 - 243"},"PeriodicalIF":0.8000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of N2/CO2 Injection on O2 Desorption in Coal Rocks Containing CH4\",\"authors\":\"Zong Xiang Li,&nbsp;Cheng Wang,&nbsp;Cong Ding\",\"doi\":\"10.3103/S0361521924700010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To investigate the desorption behavior of O<sub>2</sub> through CO<sub>2</sub>/N<sub>2</sub> injection in the gob of a gassing mine, we focused on the adsorption configuration of coal containing O<sub>2</sub>–CH<sub>4</sub>. The mechanism underlying the enhancement of O<sub>2</sub> desorption in coal due to CO<sub>2</sub>/N<sub>2</sub> injection was elucidated using the Grand Canonical Ensemble Monte Carlo (GCMC) and Molecular Dynamics (MD) methods. Furthermore, the impact of CH<sub>4</sub> on O<sub>2</sub> desorption was unveiled by detailed calculations and studies of energy variation, concentration distribution, and diffusion coefficients of oxygen.Our findings indicate the following: (1) CO<sub>2</sub> and N<sub>2</sub> facilitate the displacement of oxygen primarily by occupying adsorption sites. The CO<sub>2</sub>–O<sub>2</sub> model exhibits a significantly higher concentration of free O<sub>2</sub> molecules compared to the N<sub>2</sub>–O<sub>2</sub> model, and the CO<sub>2</sub>–O<sub>2</sub>–CH<sub>4</sub> model surpasses the N<sub>2</sub>–O<sub>2</sub>–CH<sub>4</sub> model in free O<sub>2</sub> molecules. (2) The total energy of the CO<sub>2</sub>–O<sub>2</sub> model is lower than that of the N<sub>2</sub>–O<sub>2</sub> model, indicating greater stability in the former. Similarly, the total energy of the CO<sub>2</sub>–O<sub>2</sub>–CH<sub>4</sub> model is lower than that of the N<sub>2</sub>–O<sub>2</sub>–CH<sub>4</sub> model, highlighting its superior stability. It is concluded that CO<sub>2</sub> injection is more effective in promoting oxygen desorption than N<sub>2</sub>, regardless of the presence of methane. (3) Under equivalent injection pressure, the root mean square displacement of O<sub>2</sub> in the CO<sub>2</sub>–O<sub>2</sub> system surpasses that in the N<sub>2</sub>–O<sub>2</sub> system. Furthermore, compared to the N<sub>2</sub>–O<sub>2</sub>–CH<sub>4</sub> system, the CO<sub>2</sub>–O<sub>2</sub>–CH<sub>4</sub> system exhibits a larger root mean square displacement of O<sub>2</sub>, signifying higher O<sub>2</sub> molecule activity. The diffusion coefficient of O<sub>2</sub> in the CO<sub>2</sub>–O<sub>2</sub> system is higher, underscoring the superior effectiveness of CO<sub>2</sub> in promoting O<sub>2</sub> desorption.In summary, our research outcomes offer valuable theoretical insights for fire prevention technology in goaf.</p>\",\"PeriodicalId\":779,\"journal\":{\"name\":\"Solid Fuel Chemistry\",\"volume\":\"58 3\",\"pages\":\"232 - 243\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid Fuel Chemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0361521924700010\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid Fuel Chemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.3103/S0361521924700010","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了研究瓦斯矿井煤气中通过注入 CO2/N2 对 O2 的解吸行为,我们重点研究了含有 O2-CH4 的煤的吸附构型。我们使用大规范集合蒙特卡洛(GCMC)和分子动力学(MD)方法阐明了 CO2/N2 注入增强煤中 O2 解吸的机理。此外,通过详细计算和研究氧气的能量变化、浓度分布和扩散系数,揭示了 CH4 对 O2 解吸的影响:(1) CO2 和 N2 主要通过占据吸附位点来促进氧气的置换。与 N2-O2 模型相比,CO2-O2 模型的游离 O2 分子浓度明显更高,而 CO2-O2-CH4 模型的游离 O2 分子浓度超过了 N2-O2-CH4。(2)CO2-O2 模型的总能量低于 N2-O2 模型,表明前者更稳定。同样,CO2-O2-CH4 模型的总能量也低于 N2-O2-CH4 模型,这表明前者具有更高的稳定性。由此得出结论,无论是否存在甲烷,注入 CO2 比注入 N2 更能有效促进氧气解吸。(3) 在同等注入压力下,CO2-O2 系统中 O2 的均方根位移超过 N2-O2 系统。此外,与 N2-O2-CH4 体系相比,CO2-O2-CH4 体系的 O2 均方根位移更大,表明 O2 分子活性更高。CO2-O2 系统中 O2 的扩散系数更高,这表明 CO2 在促进 O2 解吸方面具有更高的效能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of N2/CO2 Injection on O2 Desorption in Coal Rocks Containing CH4

To investigate the desorption behavior of O2 through CO2/N2 injection in the gob of a gassing mine, we focused on the adsorption configuration of coal containing O2–CH4. The mechanism underlying the enhancement of O2 desorption in coal due to CO2/N2 injection was elucidated using the Grand Canonical Ensemble Monte Carlo (GCMC) and Molecular Dynamics (MD) methods. Furthermore, the impact of CH4 on O2 desorption was unveiled by detailed calculations and studies of energy variation, concentration distribution, and diffusion coefficients of oxygen.Our findings indicate the following: (1) CO2 and N2 facilitate the displacement of oxygen primarily by occupying adsorption sites. The CO2–O2 model exhibits a significantly higher concentration of free O2 molecules compared to the N2–O2 model, and the CO2–O2–CH4 model surpasses the N2–O2–CH4 model in free O2 molecules. (2) The total energy of the CO2–O2 model is lower than that of the N2–O2 model, indicating greater stability in the former. Similarly, the total energy of the CO2–O2–CH4 model is lower than that of the N2–O2–CH4 model, highlighting its superior stability. It is concluded that CO2 injection is more effective in promoting oxygen desorption than N2, regardless of the presence of methane. (3) Under equivalent injection pressure, the root mean square displacement of O2 in the CO2–O2 system surpasses that in the N2–O2 system. Furthermore, compared to the N2–O2–CH4 system, the CO2–O2–CH4 system exhibits a larger root mean square displacement of O2, signifying higher O2 molecule activity. The diffusion coefficient of O2 in the CO2–O2 system is higher, underscoring the superior effectiveness of CO2 in promoting O2 desorption.In summary, our research outcomes offer valuable theoretical insights for fire prevention technology in goaf.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid Fuel Chemistry
Solid Fuel Chemistry CHEMISTRY, MULTIDISCIPLINARY-ENERGY & FUELS
CiteScore
1.10
自引率
28.60%
发文量
52
审稿时长
6-12 weeks
期刊介绍: The journal publishes theoretical and applied articles on the chemistry and physics of solid fuels and carbonaceous materials. It addresses the composition, structure, and properties of solid fuels. The aim of the published articles is to demonstrate how novel discoveries, developments, and theories may be used in improved analysis and design of new types of fuels, chemicals, and by-products. The journal is particularly concerned with technological aspects of various chemical conversion processes and includes papers related to geochemistry, petrology and systematization of fossil fuels, their beneficiation and preparation for processing, the processes themselves, and the ultimate recovery of the liquid or gaseous end products.
期刊最新文献
Production of Fuel Briquettes from Carbon-Containing Technogenic Raw Materials A Combined TG–FTIR Study on the Pyrolysis of Waste Generated in the Coffee Production Chain Chicken Litter Pyrolysis and Composition of Gaseous Products Formed Investigation of the Morphology, Composition, and Structure of Dehydrated Sewage Sludge of a Pulp and Paper Enterprise Thermogravimetric Analysis of PAN Fiber after Thermostabilization Process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1