通过考虑系统故障,利用实时控制规则加强绿色和灰色基础设施综合设计的复原力

IF 5.9 1区 地球科学 Q1 ENGINEERING, CIVIL Journal of Hydrology Pub Date : 2024-07-01 DOI:10.1016/j.jhydrol.2024.131498
Xinran Luo , Pan Liu , Qian Cheng , Weibo Liu , Chutian Zhou , Yalian Zheng , Dianchang Wang , Lei Cheng
{"title":"通过考虑系统故障,利用实时控制规则加强绿色和灰色基础设施综合设计的复原力","authors":"Xinran Luo ,&nbsp;Pan Liu ,&nbsp;Qian Cheng ,&nbsp;Weibo Liu ,&nbsp;Chutian Zhou ,&nbsp;Yalian Zheng ,&nbsp;Dianchang Wang ,&nbsp;Lei Cheng","doi":"10.1016/j.jhydrol.2024.131498","DOIUrl":null,"url":null,"abstract":"<div><p>The mutual benefits of real-time control and green and grey infrastructure for urban drainage system (UDS) renovations have drawn great attention. However, risks emerged due to equipment and structural failures, and no studies considered such failures while optimizing the renovation scheme. To address this issue, this study proposed a multi-criteria optimization method for the integrated design of green and grey infrastructure with real-time control rules, where the economic cost and system performance under normal and exceptional conditions were optimized simultaneously. Failure probabilities of equipment and structure were quantified using homogeneous Poisson process models, and failure losses were estimated with the aid of a machine learning-based surrogate model. This approach was tested with a combined UDS in China. Results indicate that: (1) More investment does not necessarily increase system resilience to failures. Equipment and structural failures can significantly lower the effectiveness of grey infrastructure and real-time control. Therefore, solutions with more investments in grey infrastructure, which indicate higher costs, experience greater failure losses. (2) System resilience to failures can be significantly improved while maintaining other objectives when compared with the traditional design scheme. The proposed method allows for a new perspective in addition to the cost-and-resilience two-objectives design of UDS renovations, especially for systems threatened by various failures.</p></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforcing resilience for integrated design of green and grey infrastructure with real-time control rules by considering system failures\",\"authors\":\"Xinran Luo ,&nbsp;Pan Liu ,&nbsp;Qian Cheng ,&nbsp;Weibo Liu ,&nbsp;Chutian Zhou ,&nbsp;Yalian Zheng ,&nbsp;Dianchang Wang ,&nbsp;Lei Cheng\",\"doi\":\"10.1016/j.jhydrol.2024.131498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The mutual benefits of real-time control and green and grey infrastructure for urban drainage system (UDS) renovations have drawn great attention. However, risks emerged due to equipment and structural failures, and no studies considered such failures while optimizing the renovation scheme. To address this issue, this study proposed a multi-criteria optimization method for the integrated design of green and grey infrastructure with real-time control rules, where the economic cost and system performance under normal and exceptional conditions were optimized simultaneously. Failure probabilities of equipment and structure were quantified using homogeneous Poisson process models, and failure losses were estimated with the aid of a machine learning-based surrogate model. This approach was tested with a combined UDS in China. Results indicate that: (1) More investment does not necessarily increase system resilience to failures. Equipment and structural failures can significantly lower the effectiveness of grey infrastructure and real-time control. Therefore, solutions with more investments in grey infrastructure, which indicate higher costs, experience greater failure losses. (2) System resilience to failures can be significantly improved while maintaining other objectives when compared with the traditional design scheme. The proposed method allows for a new perspective in addition to the cost-and-resilience two-objectives design of UDS renovations, especially for systems threatened by various failures.</p></div>\",\"PeriodicalId\":362,\"journal\":{\"name\":\"Journal of Hydrology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022169424008941\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022169424008941","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

在城市排水系统(UDS)改造中,实时控制与绿色和灰色基础设施的互惠互利引起了人们的极大关注。然而,由于设备和结构故障导致的风险也随之出现,目前还没有研究在优化改造方案时考虑这些故障。针对这一问题,本研究提出了一种具有实时控制规则的绿色和灰色基础设施综合设计的多标准优化方法,同时优化了正常和特殊条件下的经济成本和系统性能。利用同质泊松过程模型量化了设备和结构的故障概率,并借助基于机器学习的代用模型估算了故障损失。这种方法在中国的联合 UDS 中进行了测试。结果表明(1) 增加投资并不一定能提高系统对故障的恢复能力。设备和结构故障会大大降低灰色基础设施和实时控制的有效性。因此,灰色基础设施投资越多,成本越高,故障损失也越大。(2) 与传统设计方案相比,在保持其他目标的情况下,系统对故障的恢复能力可以得到显著提高。所提出的方法可以在 UDS 改造的成本和复原力双目标设计之外提供一个新的视角,特别是对于受到各种故障威胁的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reinforcing resilience for integrated design of green and grey infrastructure with real-time control rules by considering system failures

The mutual benefits of real-time control and green and grey infrastructure for urban drainage system (UDS) renovations have drawn great attention. However, risks emerged due to equipment and structural failures, and no studies considered such failures while optimizing the renovation scheme. To address this issue, this study proposed a multi-criteria optimization method for the integrated design of green and grey infrastructure with real-time control rules, where the economic cost and system performance under normal and exceptional conditions were optimized simultaneously. Failure probabilities of equipment and structure were quantified using homogeneous Poisson process models, and failure losses were estimated with the aid of a machine learning-based surrogate model. This approach was tested with a combined UDS in China. Results indicate that: (1) More investment does not necessarily increase system resilience to failures. Equipment and structural failures can significantly lower the effectiveness of grey infrastructure and real-time control. Therefore, solutions with more investments in grey infrastructure, which indicate higher costs, experience greater failure losses. (2) System resilience to failures can be significantly improved while maintaining other objectives when compared with the traditional design scheme. The proposed method allows for a new perspective in addition to the cost-and-resilience two-objectives design of UDS renovations, especially for systems threatened by various failures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydrology
Journal of Hydrology 地学-地球科学综合
CiteScore
11.00
自引率
12.50%
发文量
1309
审稿时长
7.5 months
期刊介绍: The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.
期刊最新文献
Dam-break flood hazard and risk assessment of large dam for emergency preparedness: A study of Ukai Dam, India Analytical model of contaminant advection, diffusion and degradation in capped sediments and sensitivity to flow and sediment properties High-resolution monitoring of soil infiltration using distributed fiber optic A hydro-geomorphologic assessment of flood generation potentiality in ungauged sub-basins and their prioritization based on traditional, statistical, MCDM and Nash-GIUH models of a tropical plateau-fringe River The causes of algal blooms exist significant scale effect in tributary of the Three Gorges Reservoir
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1