通过情感分析和语义网络进行半监督式主题表示

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-06-13 DOI:10.1016/j.bdr.2024.100474
Marco Ortu, Maurizio Romano, Andrea Carta
{"title":"通过情感分析和语义网络进行半监督式主题表示","authors":"Marco Ortu,&nbsp;Maurizio Romano,&nbsp;Andrea Carta","doi":"10.1016/j.bdr.2024.100474","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a novel approach to topic detection aimed at improving the semi-supervised clustering of customer reviews in the context of customers' services. The proposed methodology, named SeMi-supervised clustering for Assessment of Reviews using Topic and Sentiment (SMARTS) for Topic-Community Representation with Semantic Networks, combines semantic and sentiment analysis of words to derive topics related to positive and negative reviews of specific services. To achieve this, a semantic network of words is constructed based on word embedding semantic similarity to identify relationships between words used in the reviews. The resulting network is then used to derive the topics present in users' reviews, which are grouped by positive and negative sentiment based on words related to specific services. Clusters of words, obtained from the network's communities, are used to extract topics related to particular services and to improve the interpretation of users' assessments of those services. The proposed methodology is applied to tourism review data from Booking.com, and the results demonstrate the efficacy of the approach in enhancing the interpretability of the topics obtained by semi-supervised clustering. The methodology has the potential to provide valuable insights into the sentiment of customers toward tourism services, which could be utilized by service providers and decision-makers to enhance the quality of their services.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214579624000509/pdfft?md5=46a689f4478007ad8db7233af95c8c2e&pid=1-s2.0-S2214579624000509-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Semi-supervised topic representation through sentiment analysis and semantic networks\",\"authors\":\"Marco Ortu,&nbsp;Maurizio Romano,&nbsp;Andrea Carta\",\"doi\":\"10.1016/j.bdr.2024.100474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposes a novel approach to topic detection aimed at improving the semi-supervised clustering of customer reviews in the context of customers' services. The proposed methodology, named SeMi-supervised clustering for Assessment of Reviews using Topic and Sentiment (SMARTS) for Topic-Community Representation with Semantic Networks, combines semantic and sentiment analysis of words to derive topics related to positive and negative reviews of specific services. To achieve this, a semantic network of words is constructed based on word embedding semantic similarity to identify relationships between words used in the reviews. The resulting network is then used to derive the topics present in users' reviews, which are grouped by positive and negative sentiment based on words related to specific services. Clusters of words, obtained from the network's communities, are used to extract topics related to particular services and to improve the interpretation of users' assessments of those services. The proposed methodology is applied to tourism review data from Booking.com, and the results demonstrate the efficacy of the approach in enhancing the interpretability of the topics obtained by semi-supervised clustering. The methodology has the potential to provide valuable insights into the sentiment of customers toward tourism services, which could be utilized by service providers and decision-makers to enhance the quality of their services.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214579624000509/pdfft?md5=46a689f4478007ad8db7233af95c8c2e&pid=1-s2.0-S2214579624000509-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214579624000509\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214579624000509","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新颖的主题检测方法,旨在改进客户服务背景下的客户评论半监督聚类。所提出的方法名为 "利用主题和情感评估评论的 SeMi-supervised clustering(SMARTS)",即利用语义网络进行主题-社群表示,该方法结合了对词语的语义分析和情感分析,以得出与特定服务的正面和负面评论相关的主题。为了实现这一目标,我们根据词语嵌入语义相似性构建了词语语义网络,以识别评论中使用的词语之间的关系。然后,利用生成的网络推导出用户评论中的主题,并根据与特定服务相关的词语按正面和负面情绪进行分组。从网络社区中获得的词群用于提取与特定服务相关的主题,并改进对用户对这些服务评价的解释。我们将所提出的方法应用于 Booking.com 的旅游评论数据,结果表明该方法在提高通过半监督聚类获得的主题的可解释性方面非常有效。该方法有可能为客户对旅游服务的情感提供有价值的见解,服务提供商和决策者可以利用这些见解来提高服务质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Semi-supervised topic representation through sentiment analysis and semantic networks

This paper proposes a novel approach to topic detection aimed at improving the semi-supervised clustering of customer reviews in the context of customers' services. The proposed methodology, named SeMi-supervised clustering for Assessment of Reviews using Topic and Sentiment (SMARTS) for Topic-Community Representation with Semantic Networks, combines semantic and sentiment analysis of words to derive topics related to positive and negative reviews of specific services. To achieve this, a semantic network of words is constructed based on word embedding semantic similarity to identify relationships between words used in the reviews. The resulting network is then used to derive the topics present in users' reviews, which are grouped by positive and negative sentiment based on words related to specific services. Clusters of words, obtained from the network's communities, are used to extract topics related to particular services and to improve the interpretation of users' assessments of those services. The proposed methodology is applied to tourism review data from Booking.com, and the results demonstrate the efficacy of the approach in enhancing the interpretability of the topics obtained by semi-supervised clustering. The methodology has the potential to provide valuable insights into the sentiment of customers toward tourism services, which could be utilized by service providers and decision-makers to enhance the quality of their services.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1