用于优化粒子识别系统的混合深度学习模型

IF 7.2 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer Physics Communications Pub Date : 2024-06-12 DOI:10.1016/j.cpc.2024.109277
Ali Bavarchee
{"title":"用于优化粒子识别系统的混合深度学习模型","authors":"Ali Bavarchee","doi":"10.1016/j.cpc.2024.109277","DOIUrl":null,"url":null,"abstract":"<div><p>This article presents a novel machine learning approach for enhancing particle identification (PID) systems in high-energy physics (HEP) experiments. The proposed method utilizes a hybrid model that combines a deep neural network (DNN) and a random forest regressor (RFR), leveraging their complementary strengths. This approach achieves robust performance, leading to significantly improved particle discrimination and cleaner data for physics analysis. Our evaluation demonstrates a marked increase in PID system precision, highlighting the model's potential to optimize PID tasks in complex high-energy physics settings. By improving identification efficiency and reducing misidentification rates, this hybrid deep learning model offers valuable advancements for the field of particle physics.</p></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0010465524002005/pdfft?md5=bc3127783ebc5ad20f1c938b23f60b2d&pid=1-s2.0-S0010465524002005-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A hybrid deep learning model for optimizing particle identification systems\",\"authors\":\"Ali Bavarchee\",\"doi\":\"10.1016/j.cpc.2024.109277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article presents a novel machine learning approach for enhancing particle identification (PID) systems in high-energy physics (HEP) experiments. The proposed method utilizes a hybrid model that combines a deep neural network (DNN) and a random forest regressor (RFR), leveraging their complementary strengths. This approach achieves robust performance, leading to significantly improved particle discrimination and cleaner data for physics analysis. Our evaluation demonstrates a marked increase in PID system precision, highlighting the model's potential to optimize PID tasks in complex high-energy physics settings. By improving identification efficiency and reducing misidentification rates, this hybrid deep learning model offers valuable advancements for the field of particle physics.</p></div>\",\"PeriodicalId\":285,\"journal\":{\"name\":\"Computer Physics Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0010465524002005/pdfft?md5=bc3127783ebc5ad20f1c938b23f60b2d&pid=1-s2.0-S0010465524002005-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Physics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010465524002005\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465524002005","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新颖的机器学习方法,用于增强高能物理(HEP)实验中的粒子识别(PID)系统。所提出的方法利用了一个混合模型,该模型结合了深度神经网络(DNN)和随机森林回归器(RFR),充分利用了它们的互补优势。这种方法实现了稳健的性能,显著提高了粒子分辨能力,为物理分析提供了更纯净的数据。我们的评估结果表明,PID 系统的精度有了显著提高,凸显了该模型在复杂的高能物理设置中优化 PID 任务的潜力。通过提高识别效率和降低误识别率,这种混合深度学习模型为粒子物理学领域提供了宝贵的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A hybrid deep learning model for optimizing particle identification systems

This article presents a novel machine learning approach for enhancing particle identification (PID) systems in high-energy physics (HEP) experiments. The proposed method utilizes a hybrid model that combines a deep neural network (DNN) and a random forest regressor (RFR), leveraging their complementary strengths. This approach achieves robust performance, leading to significantly improved particle discrimination and cleaner data for physics analysis. Our evaluation demonstrates a marked increase in PID system precision, highlighting the model's potential to optimize PID tasks in complex high-energy physics settings. By improving identification efficiency and reducing misidentification rates, this hybrid deep learning model offers valuable advancements for the field of particle physics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Physics Communications
Computer Physics Communications 物理-计算机:跨学科应用
CiteScore
12.10
自引率
3.20%
发文量
287
审稿时长
5.3 months
期刊介绍: The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper. Computer Programs in Physics (CPiP) These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged. Computational Physics Papers (CP) These are research papers in, but are not limited to, the following themes across computational physics and related disciplines. mathematical and numerical methods and algorithms; computational models including those associated with the design, control and analysis of experiments; and algebraic computation. Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.
期刊最新文献
Computing the QRPA level density with the finite amplitude method An analysis and successful benchmarking of the Chapman-Enskog-like (CEL) continuum kinetic closure approach algorithm in NIMROD TROPIC: A program for calculating reduced transition probabilities ftint: Calculating gradient-flow integrals with pySecDec Analytic continuations and numerical evaluation of the Appell F1, F3, Lauricella FD(3) and Lauricella-Saran FS(3) and their application to Feynman integrals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1