注气过程中页岩油藏中的热锋传播:实验和数值研究

IF 6 1区 工程技术 Q2 ENERGY & FUELS Petroleum Science Pub Date : 2024-10-01 DOI:10.1016/j.petsci.2024.06.005
{"title":"注气过程中页岩油藏中的热锋传播:实验和数值研究","authors":"","doi":"10.1016/j.petsci.2024.06.005","DOIUrl":null,"url":null,"abstract":"<div><div>Air injection technique for developing shale oil has gained significant attention. However, the ability of the heat front to consistently propagate within the shale during air injection remains uncertain. To address this, we investigated the heat front propagation within oil–detritus mixtures, shale cores, and fractured shale cores using a self-designed combustion tube (CT) and experimental schemes. By integrating the results obtained from high-pressure differential scanning calorimetry and CT, we developed a comprehensive reaction kinetics model to accurately analyze the main factors influencing the heat front propagation within fractured shale. The findings revealed that in the absence of additional fractures, the heat front failed to propagate within the tight shale. The flow of gases and liquids towards the shale core was impeded, resulting in the formation of a high-pressure zone at the front region of the shale. This pressure buildup significantly hindered air injection, leading to inadequate oxygen supply and the extinguishment of the heat front. However, the study demonstrated the stable propagation of the heat front within the oil–detritus mixtures, indicating the good combustion activity of the shale oil. Furthermore, the heat front successfully propagated within the fractured shale, generating a substantial amount of heat that facilitated the creation of fractures and enhanced gas injection and shale oil flow. It was important to note that after the heat front passed through the shale, the combustion intensity decreased. The simulation results indicated that injecting air into the main fracturing layers of the shale oil reservoir enabled the establishment of a stable heat front. Increasing the reservoir temperature (from 63 to 143 °C) and oxygen concentration in the injected gas (from 11% to 21%) promoted notable heat front propagation and increased the average temperature of the heat front. It was concluded that temperature and oxygen concentration had the most important influence on the heat front propagation, followed by pressure and oil saturation.</div></div>","PeriodicalId":19938,"journal":{"name":"Petroleum Science","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat front propagation in shale oil reservoirs during air injection: Experimental and numerical studies\",\"authors\":\"\",\"doi\":\"10.1016/j.petsci.2024.06.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Air injection technique for developing shale oil has gained significant attention. However, the ability of the heat front to consistently propagate within the shale during air injection remains uncertain. To address this, we investigated the heat front propagation within oil–detritus mixtures, shale cores, and fractured shale cores using a self-designed combustion tube (CT) and experimental schemes. By integrating the results obtained from high-pressure differential scanning calorimetry and CT, we developed a comprehensive reaction kinetics model to accurately analyze the main factors influencing the heat front propagation within fractured shale. The findings revealed that in the absence of additional fractures, the heat front failed to propagate within the tight shale. The flow of gases and liquids towards the shale core was impeded, resulting in the formation of a high-pressure zone at the front region of the shale. This pressure buildup significantly hindered air injection, leading to inadequate oxygen supply and the extinguishment of the heat front. However, the study demonstrated the stable propagation of the heat front within the oil–detritus mixtures, indicating the good combustion activity of the shale oil. Furthermore, the heat front successfully propagated within the fractured shale, generating a substantial amount of heat that facilitated the creation of fractures and enhanced gas injection and shale oil flow. It was important to note that after the heat front passed through the shale, the combustion intensity decreased. The simulation results indicated that injecting air into the main fracturing layers of the shale oil reservoir enabled the establishment of a stable heat front. Increasing the reservoir temperature (from 63 to 143 °C) and oxygen concentration in the injected gas (from 11% to 21%) promoted notable heat front propagation and increased the average temperature of the heat front. It was concluded that temperature and oxygen concentration had the most important influence on the heat front propagation, followed by pressure and oil saturation.</div></div>\",\"PeriodicalId\":19938,\"journal\":{\"name\":\"Petroleum Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1995822624001638\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1995822624001638","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

开发页岩油的空气注入技术受到了广泛关注。然而,在空气注入过程中,热锋在页岩内持续传播的能力仍不确定。为了解决这个问题,我们使用自行设计的燃烧管(CT)和实验方案,研究了热锋在石油-杂质混合物、页岩岩心和断裂页岩岩心内的传播情况。综合高压差示扫描量热法和 CT 的结果,我们建立了一个综合反应动力学模型,以准确分析影响热锋在断裂页岩内传播的主要因素。研究结果表明,在没有额外裂缝的情况下,热锋无法在致密页岩内传播。气体和液体流向页岩核心受到阻碍,导致页岩前沿区域形成高压区。这种压力积聚严重阻碍了空气注入,导致氧气供应不足和热锋熄灭。不过,研究表明,热锋在油-杂质混合物中稳定传播,表明页岩油具有良好的燃烧活性。此外,热锋还成功地在断裂页岩中传播,产生大量热量,促进了断裂的形成,增强了天然气注入和页岩油流动。值得注意的是,热锋穿过页岩后,燃烧强度降低。模拟结果表明,向页岩油藏的主要压裂层注入空气能够建立稳定的热锋。提高储层温度(从 63°C 提高到 143°C)和注入气体中的氧气浓度(从 11% 提高到 21%)可显著促进热锋的传播,并提高热锋的平均温度。结论是,温度和氧气浓度对热锋传播的影响最大,其次是压力和油饱和度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heat front propagation in shale oil reservoirs during air injection: Experimental and numerical studies
Air injection technique for developing shale oil has gained significant attention. However, the ability of the heat front to consistently propagate within the shale during air injection remains uncertain. To address this, we investigated the heat front propagation within oil–detritus mixtures, shale cores, and fractured shale cores using a self-designed combustion tube (CT) and experimental schemes. By integrating the results obtained from high-pressure differential scanning calorimetry and CT, we developed a comprehensive reaction kinetics model to accurately analyze the main factors influencing the heat front propagation within fractured shale. The findings revealed that in the absence of additional fractures, the heat front failed to propagate within the tight shale. The flow of gases and liquids towards the shale core was impeded, resulting in the formation of a high-pressure zone at the front region of the shale. This pressure buildup significantly hindered air injection, leading to inadequate oxygen supply and the extinguishment of the heat front. However, the study demonstrated the stable propagation of the heat front within the oil–detritus mixtures, indicating the good combustion activity of the shale oil. Furthermore, the heat front successfully propagated within the fractured shale, generating a substantial amount of heat that facilitated the creation of fractures and enhanced gas injection and shale oil flow. It was important to note that after the heat front passed through the shale, the combustion intensity decreased. The simulation results indicated that injecting air into the main fracturing layers of the shale oil reservoir enabled the establishment of a stable heat front. Increasing the reservoir temperature (from 63 to 143 °C) and oxygen concentration in the injected gas (from 11% to 21%) promoted notable heat front propagation and increased the average temperature of the heat front. It was concluded that temperature and oxygen concentration had the most important influence on the heat front propagation, followed by pressure and oil saturation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Petroleum Science
Petroleum Science 地学-地球化学与地球物理
CiteScore
7.70
自引率
16.10%
发文量
311
审稿时长
63 days
期刊介绍: Petroleum Science is the only English journal in China on petroleum science and technology that is intended for professionals engaged in petroleum science research and technical applications all over the world, as well as the managerial personnel of oil companies. It covers petroleum geology, petroleum geophysics, petroleum engineering, petrochemistry & chemical engineering, petroleum mechanics, and economic management. It aims to introduce the latest results in oil industry research in China, promote cooperation in petroleum science research between China and the rest of the world, and build a bridge for scientific communication between China and the world.
期刊最新文献
Characterization of chemical composition of high viscosity heavy oils: Macroscopic properties, and semi-quantitative analysis of molecular composition using high-resolution mass spectrometry The impact of industrial transformation on green economic efficiency: New evidence based on energy use Morphological complexity and azimuthal disorder of evolving pore space in low-maturity oil shale during in-situ thermal upgrading and impacts on permeability Influence of the mechanical properties of materials on the ultimate pressure-bearing capability of a pressure-preserving controller 3D rock physics template-based probabilistic estimation of tight sandstone reservoir properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1