{"title":"钻孔电机的钻孔动态测量及其在通过机器学习识别电机运行状态中的应用","authors":"Fei Li , Haolan Song , Yifan Wang","doi":"10.1016/j.petlm.2024.06.003","DOIUrl":null,"url":null,"abstract":"<div><div>Drilling motors are widely used in unconventional oil and gas exploration. Due to the increased non-productive time and drilling costs brought about by accidental damage to drilling motors, predictive maintenance for drilling motors is necessary to optimize asset utilization. However, service companies face significant challenges in achieving predictive maintenance: operational data acquisition, automated statistics analysis, and drilling state recognition. This paper presents a miniature vibration recorder, an automatic statistical analysis method, and a layered recognition algorithm to resolve these challenges and improve tool maintenance efficiency. The designed recorder can be installed in the catch of a conventional mud motor to record drilling dynamics over a drilling motor's entire operation cycle. Time-series data from the recorder can be used to automatically generate operation statistics, mitigating the costs incurred by manual data analysis. The layered recognition algorithm then enables the automatic identification of drilling operation states, i.e., surface, downhole non-drilling, downhole sliding, and downhole rotation. The solutions were validated by deploying the recorder in drilling field runs and analyzing recorded data using the associated design software, yielding a functional data collection, automatic data statistical analysis, and operation state recognition accuracy of 95%. Through achieving improved data collection and analysis, the recorder and software introduced in this work can notify motor owners of the detailed operation history of their tools and enable informed preventive maintenance.</div></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"10 4","pages":"Pages 608-619"},"PeriodicalIF":4.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drilling dynamics measurement of drilling motors and its application in recognition of motor operation states through machine learning\",\"authors\":\"Fei Li , Haolan Song , Yifan Wang\",\"doi\":\"10.1016/j.petlm.2024.06.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Drilling motors are widely used in unconventional oil and gas exploration. Due to the increased non-productive time and drilling costs brought about by accidental damage to drilling motors, predictive maintenance for drilling motors is necessary to optimize asset utilization. However, service companies face significant challenges in achieving predictive maintenance: operational data acquisition, automated statistics analysis, and drilling state recognition. This paper presents a miniature vibration recorder, an automatic statistical analysis method, and a layered recognition algorithm to resolve these challenges and improve tool maintenance efficiency. The designed recorder can be installed in the catch of a conventional mud motor to record drilling dynamics over a drilling motor's entire operation cycle. Time-series data from the recorder can be used to automatically generate operation statistics, mitigating the costs incurred by manual data analysis. The layered recognition algorithm then enables the automatic identification of drilling operation states, i.e., surface, downhole non-drilling, downhole sliding, and downhole rotation. The solutions were validated by deploying the recorder in drilling field runs and analyzing recorded data using the associated design software, yielding a functional data collection, automatic data statistical analysis, and operation state recognition accuracy of 95%. Through achieving improved data collection and analysis, the recorder and software introduced in this work can notify motor owners of the detailed operation history of their tools and enable informed preventive maintenance.</div></div>\",\"PeriodicalId\":37433,\"journal\":{\"name\":\"Petroleum\",\"volume\":\"10 4\",\"pages\":\"Pages 608-619\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405656124000221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405656124000221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Drilling dynamics measurement of drilling motors and its application in recognition of motor operation states through machine learning
Drilling motors are widely used in unconventional oil and gas exploration. Due to the increased non-productive time and drilling costs brought about by accidental damage to drilling motors, predictive maintenance for drilling motors is necessary to optimize asset utilization. However, service companies face significant challenges in achieving predictive maintenance: operational data acquisition, automated statistics analysis, and drilling state recognition. This paper presents a miniature vibration recorder, an automatic statistical analysis method, and a layered recognition algorithm to resolve these challenges and improve tool maintenance efficiency. The designed recorder can be installed in the catch of a conventional mud motor to record drilling dynamics over a drilling motor's entire operation cycle. Time-series data from the recorder can be used to automatically generate operation statistics, mitigating the costs incurred by manual data analysis. The layered recognition algorithm then enables the automatic identification of drilling operation states, i.e., surface, downhole non-drilling, downhole sliding, and downhole rotation. The solutions were validated by deploying the recorder in drilling field runs and analyzing recorded data using the associated design software, yielding a functional data collection, automatic data statistical analysis, and operation state recognition accuracy of 95%. Through achieving improved data collection and analysis, the recorder and software introduced in this work can notify motor owners of the detailed operation history of their tools and enable informed preventive maintenance.
期刊介绍:
Examples of appropriate topical areas that will be considered include the following: 1.comprehensive research on oil and gas reservoir (reservoir geology): -geological basis of oil and gas reservoirs -reservoir geochemistry -reservoir formation mechanism -reservoir identification methods and techniques 2.kinetics of oil and gas basins and analyses of potential oil and gas resources: -fine description factors of hydrocarbon accumulation -mechanism analysis on recovery and dynamic accumulation process -relationship between accumulation factors and the accumulation process -analysis of oil and gas potential resource 3.theories and methods for complex reservoir geophysical prospecting: -geophysical basis of deep geologic structures and background of hydrocarbon occurrence -geophysical prediction of deep and complex reservoirs -physical test analyses and numerical simulations of reservoir rocks -anisotropic medium seismic imaging theory and new technology for multiwave seismic exploration -o theories and methods for reservoir fluid geophysical identification and prediction 4.theories, methods, technology, and design for complex reservoir development: -reservoir percolation theory and application technology -field development theories and methods -theory and technology for enhancing recovery efficiency 5.working liquid for oil and gas wells and reservoir protection technology: -working chemicals and mechanics for oil and gas wells -reservoir protection technology 6.new techniques and technologies for oil and gas drilling and production: -under-balanced drilling/gas drilling -special-track well drilling -cementing and completion of oil and gas wells -engineering safety applications for oil and gas wells -new technology of fracture acidizing