{"title":"印度东北部第三纪煤炭中的硫稳定同位素","authors":"Vivek Kumar , Dibyendu Paul , Sudhir Kumar","doi":"10.1016/j.coal.2024.104550","DOIUrl":null,"url":null,"abstract":"<div><p>Sulfur stable isotope signatures are instrumental in tracing the sources and tracking the movement of sulfur in different environmental compartments, besides providing vital insights into the origin and transport dynamics. Sulfur stable isotope composition in coal can give valuable information regarding sulfur sources and the process of sulfur incorporation in coal. The present study was conducted to determine the total sulfur content and sulfur isotopic composition for bulk sulfur (bulk S δ<sup>34</sup>S) in Oligocene and Eocene coal samples from coal mines and a few coal stockings in northeast India. The results revealed that the total sulfur content in coal samples varied between 1.03 and 4.80 (wt%) with an average value of 2.64 wt%. The bulk S δ<sup>34</sup>S in coal samples exhibited a wide range between −4.66 ‰ to 14.78 ‰ (VCDT). Oligocene coal samples from mines in Arunachal Pradesh, Assam, and Nagaland were enriched with heavier sulfur isotopes relative to Eocene coal samples from the Jaintia Hills region of Meghalaya. A moderate positive correlation was observed in the Oligocene coal samples, in contrast to the moderate negative correlation found in the Eocene coal samples. The bulk S δ<sup>34</sup>S values and sulfur content in coal samples from coal stockings matched closely with Assam and Meghalaya mine samples. The findings of this study can be used to track the sources and movement of coal sulfur in various environmental compartments, besides providing valuable information about sulfur sources, the process of sulfur incorporation in coal, and the depositional environment.</p></div>","PeriodicalId":13864,"journal":{"name":"International Journal of Coal Geology","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sulfur stable isotopes in Paleogene coals of Northeast India\",\"authors\":\"Vivek Kumar , Dibyendu Paul , Sudhir Kumar\",\"doi\":\"10.1016/j.coal.2024.104550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sulfur stable isotope signatures are instrumental in tracing the sources and tracking the movement of sulfur in different environmental compartments, besides providing vital insights into the origin and transport dynamics. Sulfur stable isotope composition in coal can give valuable information regarding sulfur sources and the process of sulfur incorporation in coal. The present study was conducted to determine the total sulfur content and sulfur isotopic composition for bulk sulfur (bulk S δ<sup>34</sup>S) in Oligocene and Eocene coal samples from coal mines and a few coal stockings in northeast India. The results revealed that the total sulfur content in coal samples varied between 1.03 and 4.80 (wt%) with an average value of 2.64 wt%. The bulk S δ<sup>34</sup>S in coal samples exhibited a wide range between −4.66 ‰ to 14.78 ‰ (VCDT). Oligocene coal samples from mines in Arunachal Pradesh, Assam, and Nagaland were enriched with heavier sulfur isotopes relative to Eocene coal samples from the Jaintia Hills region of Meghalaya. A moderate positive correlation was observed in the Oligocene coal samples, in contrast to the moderate negative correlation found in the Eocene coal samples. The bulk S δ<sup>34</sup>S values and sulfur content in coal samples from coal stockings matched closely with Assam and Meghalaya mine samples. The findings of this study can be used to track the sources and movement of coal sulfur in various environmental compartments, besides providing valuable information about sulfur sources, the process of sulfur incorporation in coal, and the depositional environment.</p></div>\",\"PeriodicalId\":13864,\"journal\":{\"name\":\"International Journal of Coal Geology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Coal Geology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166516224001071\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Coal Geology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166516224001071","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
硫稳定同位素特征有助于追溯硫的来源并追踪硫在不同环境区划中的移动,此外还能提供有关硫的来源和迁移动态的重要见解。煤中的硫稳定同位素组成可以提供有关硫来源和煤中硫掺入过程的宝贵信息。本研究的目的是测定印度东北部煤矿和一些煤层样本中渐新世和始新世煤炭样本中的总硫含量和块状硫(bulk S δ34S)的硫同位素组成。结果显示,煤样中的全硫含量在 1.03 至 4.80(重量百分比)之间变化,平均值为 2.64(重量百分比)。煤样中的大量 S δ34S 在 -4.66 ‰ 至 14.78 ‰(VCDT)之间变化很大。阿鲁纳恰尔邦、阿萨姆邦和那加兰邦煤矿的渐新世煤炭样品与梅加拉亚邦詹蒂亚山地区的始新世煤炭样品相比,富含更重的硫同位素。在渐新世煤炭样本中观察到了中等程度的正相关,而在始新世煤炭样本中则发现了中等程度的负相关。煤炭样品中的大量 S δ34S 值和硫含量与阿萨姆邦和梅加拉亚邦的煤矿样品非常吻合。这项研究的结果可用于追踪煤炭硫磺在不同环境区划中的来源和移动,此外还提供了有关硫磺来源、煤炭中硫磺掺入过程和沉积环境的宝贵信息。
Sulfur stable isotopes in Paleogene coals of Northeast India
Sulfur stable isotope signatures are instrumental in tracing the sources and tracking the movement of sulfur in different environmental compartments, besides providing vital insights into the origin and transport dynamics. Sulfur stable isotope composition in coal can give valuable information regarding sulfur sources and the process of sulfur incorporation in coal. The present study was conducted to determine the total sulfur content and sulfur isotopic composition for bulk sulfur (bulk S δ34S) in Oligocene and Eocene coal samples from coal mines and a few coal stockings in northeast India. The results revealed that the total sulfur content in coal samples varied between 1.03 and 4.80 (wt%) with an average value of 2.64 wt%. The bulk S δ34S in coal samples exhibited a wide range between −4.66 ‰ to 14.78 ‰ (VCDT). Oligocene coal samples from mines in Arunachal Pradesh, Assam, and Nagaland were enriched with heavier sulfur isotopes relative to Eocene coal samples from the Jaintia Hills region of Meghalaya. A moderate positive correlation was observed in the Oligocene coal samples, in contrast to the moderate negative correlation found in the Eocene coal samples. The bulk S δ34S values and sulfur content in coal samples from coal stockings matched closely with Assam and Meghalaya mine samples. The findings of this study can be used to track the sources and movement of coal sulfur in various environmental compartments, besides providing valuable information about sulfur sources, the process of sulfur incorporation in coal, and the depositional environment.
期刊介绍:
The International Journal of Coal Geology deals with fundamental and applied aspects of the geology and petrology of coal, oil/gas source rocks and shale gas resources. The journal aims to advance the exploration, exploitation and utilization of these resources, and to stimulate environmental awareness as well as advancement of engineering for effective resource management.