Shutian Cao , Fengshou Zhang , Mengke An , Derek Elsworth , Manchao He , Hai Liu , Luanxiao Zhao
{"title":"玄武岩断层中受温度升高和黑曜石添加控制的冲沟稳定性及其对月震的影响","authors":"Shutian Cao , Fengshou Zhang , Mengke An , Derek Elsworth , Manchao He , Hai Liu , Luanxiao Zhao","doi":"10.1016/j.ijmst.2024.04.012","DOIUrl":null,"url":null,"abstract":"<div><div>Basalt is a major component of the earth and moon crust. Mineral composition and temperature influence frictional instability and thus the potential for seismicity on basaltic faults. We performed velocity-stepping shear experiments on basalt gouges at a confining pressure of 100 MPa, temperatures in the range of 100–400 °C and with varied obsidian mass fractions of 0–100% under wet/dry conditions to investigate the frictional strength and stability of basaltic faults. We observe a transition from velocity-neutral to velocity-weakening behaviors with increasing obsidian content. The frictional stability response of the mixed obsidian/basalt gouges is characterized by a transition from velocity-strengthening to velocity-weakening at 200 °C and another transition to velocity-strengthening at temperatures >300 °C. Conversely, frictional strengths of the obsidian-bearing gouges are insensitive to temperature and wet/dry conditions. These results suggest that obsidian content dominates the potential seismic response of basaltic faults with the effect of temperature controlling the range of seismogenic depths. Thus, shallow moonquakes tend to occur in the lower lunar crust due to the corresponding anticipated higher glass content and a projected temperature range conducive to velocity-weakening behavior. These observations contribute to a better understanding of the nucleation mechanism of shallow seismicity in basaltic faults.</div></div>","PeriodicalId":48625,"journal":{"name":"International Journal of Mining Science and Technology","volume":"34 9","pages":"Pages 1273-1282"},"PeriodicalIF":11.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gouge stability controlled by temperature elevation and obsidian addition in basaltic faults and implications for moonquakes\",\"authors\":\"Shutian Cao , Fengshou Zhang , Mengke An , Derek Elsworth , Manchao He , Hai Liu , Luanxiao Zhao\",\"doi\":\"10.1016/j.ijmst.2024.04.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Basalt is a major component of the earth and moon crust. Mineral composition and temperature influence frictional instability and thus the potential for seismicity on basaltic faults. We performed velocity-stepping shear experiments on basalt gouges at a confining pressure of 100 MPa, temperatures in the range of 100–400 °C and with varied obsidian mass fractions of 0–100% under wet/dry conditions to investigate the frictional strength and stability of basaltic faults. We observe a transition from velocity-neutral to velocity-weakening behaviors with increasing obsidian content. The frictional stability response of the mixed obsidian/basalt gouges is characterized by a transition from velocity-strengthening to velocity-weakening at 200 °C and another transition to velocity-strengthening at temperatures >300 °C. Conversely, frictional strengths of the obsidian-bearing gouges are insensitive to temperature and wet/dry conditions. These results suggest that obsidian content dominates the potential seismic response of basaltic faults with the effect of temperature controlling the range of seismogenic depths. Thus, shallow moonquakes tend to occur in the lower lunar crust due to the corresponding anticipated higher glass content and a projected temperature range conducive to velocity-weakening behavior. These observations contribute to a better understanding of the nucleation mechanism of shallow seismicity in basaltic faults.</div></div>\",\"PeriodicalId\":48625,\"journal\":{\"name\":\"International Journal of Mining Science and Technology\",\"volume\":\"34 9\",\"pages\":\"Pages 1273-1282\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mining Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095268624000624\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095268624000624","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
Gouge stability controlled by temperature elevation and obsidian addition in basaltic faults and implications for moonquakes
Basalt is a major component of the earth and moon crust. Mineral composition and temperature influence frictional instability and thus the potential for seismicity on basaltic faults. We performed velocity-stepping shear experiments on basalt gouges at a confining pressure of 100 MPa, temperatures in the range of 100–400 °C and with varied obsidian mass fractions of 0–100% under wet/dry conditions to investigate the frictional strength and stability of basaltic faults. We observe a transition from velocity-neutral to velocity-weakening behaviors with increasing obsidian content. The frictional stability response of the mixed obsidian/basalt gouges is characterized by a transition from velocity-strengthening to velocity-weakening at 200 °C and another transition to velocity-strengthening at temperatures >300 °C. Conversely, frictional strengths of the obsidian-bearing gouges are insensitive to temperature and wet/dry conditions. These results suggest that obsidian content dominates the potential seismic response of basaltic faults with the effect of temperature controlling the range of seismogenic depths. Thus, shallow moonquakes tend to occur in the lower lunar crust due to the corresponding anticipated higher glass content and a projected temperature range conducive to velocity-weakening behavior. These observations contribute to a better understanding of the nucleation mechanism of shallow seismicity in basaltic faults.
期刊介绍:
The International Journal of Mining Science and Technology, founded in 1990 as the Journal of China University of Mining and Technology, is a monthly English-language journal. It publishes original research papers and high-quality reviews that explore the latest advancements in theories, methodologies, and applications within the realm of mining sciences and technologies. The journal serves as an international exchange forum for readers and authors worldwide involved in mining sciences and technologies. All papers undergo a peer-review process and meticulous editing by specialists and authorities, with the entire submission-to-publication process conducted electronically.