Jiangli Duan , Guoyin Wang , Xin Hu , Qun Liu , Qin Jiang , Huamin Zhu
{"title":"知识图谱的概念认知:挖掘多粒度决策规则","authors":"Jiangli Duan , Guoyin Wang , Xin Hu , Qun Liu , Qin Jiang , Huamin Zhu","doi":"10.1016/j.cogsys.2024.101258","DOIUrl":null,"url":null,"abstract":"<div><p>As part of cognitive intelligence, concept cognition for knowledge graphs aims to clearly grasp the typical characteristics of the things referred to by the concept, which can provide prior knowledge for machine understanding and thinking. Different from concept learning and formal concept analysis that learn new concepts from data and the general decision rule that comes from an independent decision table, this paper cognizes an existing concept by decision rules that come from multiple granularities. Specifically, 1) concept cognition for knowledge graphs is realized from the perspective of mining multi-granularity decision rule. 2) Decision tables corresponding to four granularities form a multi-granularity decision table group, and then the result from coarser granularity can guide and help obtaining the result from finer granularity. 3) We propose a framework for mining multi-granularity decision rules, which involves going from a multi-granularity decision table group to the frequent maximal attribute patterns to the decision rules to the credible decision rules. Finally, we verified effectiveness of dividing positive and negative data, monotonicity of attribute patterns in a multi-granularity decision table group, and downward monotonicity of credibility, and observed the impact of the parameter <em>min_cov</em> and <em>min_conf</em> on execution times.</p></div>","PeriodicalId":55242,"journal":{"name":"Cognitive Systems Research","volume":"87 ","pages":"Article 101258"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concept cognition for knowledge graphs: Mining multi-granularity decision rule\",\"authors\":\"Jiangli Duan , Guoyin Wang , Xin Hu , Qun Liu , Qin Jiang , Huamin Zhu\",\"doi\":\"10.1016/j.cogsys.2024.101258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As part of cognitive intelligence, concept cognition for knowledge graphs aims to clearly grasp the typical characteristics of the things referred to by the concept, which can provide prior knowledge for machine understanding and thinking. Different from concept learning and formal concept analysis that learn new concepts from data and the general decision rule that comes from an independent decision table, this paper cognizes an existing concept by decision rules that come from multiple granularities. Specifically, 1) concept cognition for knowledge graphs is realized from the perspective of mining multi-granularity decision rule. 2) Decision tables corresponding to four granularities form a multi-granularity decision table group, and then the result from coarser granularity can guide and help obtaining the result from finer granularity. 3) We propose a framework for mining multi-granularity decision rules, which involves going from a multi-granularity decision table group to the frequent maximal attribute patterns to the decision rules to the credible decision rules. Finally, we verified effectiveness of dividing positive and negative data, monotonicity of attribute patterns in a multi-granularity decision table group, and downward monotonicity of credibility, and observed the impact of the parameter <em>min_cov</em> and <em>min_conf</em> on execution times.</p></div>\",\"PeriodicalId\":55242,\"journal\":{\"name\":\"Cognitive Systems Research\",\"volume\":\"87 \",\"pages\":\"Article 101258\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Systems Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389041724000524\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Systems Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389041724000524","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Concept cognition for knowledge graphs: Mining multi-granularity decision rule
As part of cognitive intelligence, concept cognition for knowledge graphs aims to clearly grasp the typical characteristics of the things referred to by the concept, which can provide prior knowledge for machine understanding and thinking. Different from concept learning and formal concept analysis that learn new concepts from data and the general decision rule that comes from an independent decision table, this paper cognizes an existing concept by decision rules that come from multiple granularities. Specifically, 1) concept cognition for knowledge graphs is realized from the perspective of mining multi-granularity decision rule. 2) Decision tables corresponding to four granularities form a multi-granularity decision table group, and then the result from coarser granularity can guide and help obtaining the result from finer granularity. 3) We propose a framework for mining multi-granularity decision rules, which involves going from a multi-granularity decision table group to the frequent maximal attribute patterns to the decision rules to the credible decision rules. Finally, we verified effectiveness of dividing positive and negative data, monotonicity of attribute patterns in a multi-granularity decision table group, and downward monotonicity of credibility, and observed the impact of the parameter min_cov and min_conf on execution times.
期刊介绍:
Cognitive Systems Research is dedicated to the study of human-level cognition. As such, it welcomes papers which advance the understanding, design and applications of cognitive and intelligent systems, both natural and artificial.
The journal brings together a broad community studying cognition in its many facets in vivo and in silico, across the developmental spectrum, focusing on individual capacities or on entire architectures. It aims to foster debate and integrate ideas, concepts, constructs, theories, models and techniques from across different disciplines and different perspectives on human-level cognition. The scope of interest includes the study of cognitive capacities and architectures - both brain-inspired and non-brain-inspired - and the application of cognitive systems to real-world problems as far as it offers insights relevant for the understanding of cognition.
Cognitive Systems Research therefore welcomes mature and cutting-edge research approaching cognition from a systems-oriented perspective, both theoretical and empirically-informed, in the form of original manuscripts, short communications, opinion articles, systematic reviews, and topical survey articles from the fields of Cognitive Science (including Philosophy of Cognitive Science), Artificial Intelligence/Computer Science, Cognitive Robotics, Developmental Science, Psychology, and Neuroscience and Neuromorphic Engineering. Empirical studies will be considered if they are supplemented by theoretical analyses and contributions to theory development and/or computational modelling studies.