{"title":"HeteLFX:利用潜在特征提取进行异构推荐","authors":"Hoon Park, Jason J. Jung","doi":"10.1016/j.elerap.2024.101419","DOIUrl":null,"url":null,"abstract":"<div><p>This study proposes a heterogeneous recommendation model that does not rely on data sharing. Previous studies have predominantly focused on nested homogeneous domains that share data. However, this approach encounters issues as it could lead to diminished recommendation performance when there is a scarcity of redundant data within these domains. To overcome these challenges, we propose the HeteLFX model, which extracts and bridges the latent features (LF) of each domain. This model resolves the problems by leveraging the metainformation of domain items to generate an LF. LF is extracted for each domain, and bridges are established based on the relevance of the latent knowledge, thereby enabling heterogeneous recommendations. The efficacy of the HeteLFX model was assessed by comparing it with four other heterogeneous recommendation systems, which are variants of X-Map and NX-Map. The results revealed that the HeteLFX model improved performance by reducing the mean absolute error (MAE) by approximately 0.3, thereby underscoring the superiority of the model. Additionally, HeteLFX reduced the MAE by up to approximately 0.45, depending on the relevance of the data within the domain.</p></div>","PeriodicalId":50541,"journal":{"name":"Electronic Commerce Research and Applications","volume":"67 ","pages":"Article 101419"},"PeriodicalIF":5.9000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HeteLFX: Heterogeneous recommendation with latent feature extraction\",\"authors\":\"Hoon Park, Jason J. Jung\",\"doi\":\"10.1016/j.elerap.2024.101419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study proposes a heterogeneous recommendation model that does not rely on data sharing. Previous studies have predominantly focused on nested homogeneous domains that share data. However, this approach encounters issues as it could lead to diminished recommendation performance when there is a scarcity of redundant data within these domains. To overcome these challenges, we propose the HeteLFX model, which extracts and bridges the latent features (LF) of each domain. This model resolves the problems by leveraging the metainformation of domain items to generate an LF. LF is extracted for each domain, and bridges are established based on the relevance of the latent knowledge, thereby enabling heterogeneous recommendations. The efficacy of the HeteLFX model was assessed by comparing it with four other heterogeneous recommendation systems, which are variants of X-Map and NX-Map. The results revealed that the HeteLFX model improved performance by reducing the mean absolute error (MAE) by approximately 0.3, thereby underscoring the superiority of the model. Additionally, HeteLFX reduced the MAE by up to approximately 0.45, depending on the relevance of the data within the domain.</p></div>\",\"PeriodicalId\":50541,\"journal\":{\"name\":\"Electronic Commerce Research and Applications\",\"volume\":\"67 \",\"pages\":\"Article 101419\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Commerce Research and Applications\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567422324000644\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Commerce Research and Applications","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567422324000644","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
HeteLFX: Heterogeneous recommendation with latent feature extraction
This study proposes a heterogeneous recommendation model that does not rely on data sharing. Previous studies have predominantly focused on nested homogeneous domains that share data. However, this approach encounters issues as it could lead to diminished recommendation performance when there is a scarcity of redundant data within these domains. To overcome these challenges, we propose the HeteLFX model, which extracts and bridges the latent features (LF) of each domain. This model resolves the problems by leveraging the metainformation of domain items to generate an LF. LF is extracted for each domain, and bridges are established based on the relevance of the latent knowledge, thereby enabling heterogeneous recommendations. The efficacy of the HeteLFX model was assessed by comparing it with four other heterogeneous recommendation systems, which are variants of X-Map and NX-Map. The results revealed that the HeteLFX model improved performance by reducing the mean absolute error (MAE) by approximately 0.3, thereby underscoring the superiority of the model. Additionally, HeteLFX reduced the MAE by up to approximately 0.45, depending on the relevance of the data within the domain.
期刊介绍:
Electronic Commerce Research and Applications aims to create and disseminate enduring knowledge for the fast-changing e-commerce environment. A major dilemma in e-commerce research is how to achieve a balance between the currency and the life span of knowledge.
Electronic Commerce Research and Applications will contribute to the establishment of a research community to create the knowledge, technology, theory, and applications for the development of electronic commerce. This is targeted at the intersection of technological potential and business aims.