Jianhao Wu , Xiaozhuo Wang , Jinglei Hu , Chunyan Li , Linpu Shi , Sa-Sa Xia , Yuxing Cai , Rongrong Jia , Zhi Chen , Lan Li
{"title":"改良热注入法制备的超小型铯银溴化铋量子点用于高效降解有机溶剂中的污染物","authors":"Jianhao Wu , Xiaozhuo Wang , Jinglei Hu , Chunyan Li , Linpu Shi , Sa-Sa Xia , Yuxing Cai , Rongrong Jia , Zhi Chen , Lan Li","doi":"10.1016/j.jes.2024.06.011","DOIUrl":null,"url":null,"abstract":"<div><p>Lead-free halide perovskite material has drawn fast-growing interest due to its superior solar-conversion efficiency and nontoxic nature. In this work, we have successfully fabricated cesium silver bismuth bromide (Cs<sub>2</sub>AgBiBr<sub>6</sub>) quantum dots utilizing the hot injection method. The as-synthesized quantum dots were characterized by combined techniques, which showed remarkable visible-light photocatalytic activity for organic dyes and antibiotic degradation in ethanol. Specifically, about 97% of rhodamine B and methyl orange may be removed within 10 min and 30 min, respectively. Additionally, 60% of antibiotic residue of tetracycline hydrochloride is degraded in 30 min which is 7 times more than that on commercial titania (P25). The reactive species for the photodegradation are determined through capture experiments, and a reaction mechanism is proposed accordingly. This work provides a novel photocatalyst for the selective removal of diverse organic contaminants in ethanol and an alternative for the potential application of lead-free halide perovskites.</p></div>","PeriodicalId":15788,"journal":{"name":"Journal of Environmental Sciences-china","volume":"152 ","pages":"Pages 577-583"},"PeriodicalIF":5.9000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-small cesium silver bismuth bromide quantum dots fabricated by modified hot-injection method for highly efficient degradation of contaminants in organic solvent\",\"authors\":\"Jianhao Wu , Xiaozhuo Wang , Jinglei Hu , Chunyan Li , Linpu Shi , Sa-Sa Xia , Yuxing Cai , Rongrong Jia , Zhi Chen , Lan Li\",\"doi\":\"10.1016/j.jes.2024.06.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lead-free halide perovskite material has drawn fast-growing interest due to its superior solar-conversion efficiency and nontoxic nature. In this work, we have successfully fabricated cesium silver bismuth bromide (Cs<sub>2</sub>AgBiBr<sub>6</sub>) quantum dots utilizing the hot injection method. The as-synthesized quantum dots were characterized by combined techniques, which showed remarkable visible-light photocatalytic activity for organic dyes and antibiotic degradation in ethanol. Specifically, about 97% of rhodamine B and methyl orange may be removed within 10 min and 30 min, respectively. Additionally, 60% of antibiotic residue of tetracycline hydrochloride is degraded in 30 min which is 7 times more than that on commercial titania (P25). The reactive species for the photodegradation are determined through capture experiments, and a reaction mechanism is proposed accordingly. This work provides a novel photocatalyst for the selective removal of diverse organic contaminants in ethanol and an alternative for the potential application of lead-free halide perovskites.</p></div>\",\"PeriodicalId\":15788,\"journal\":{\"name\":\"Journal of Environmental Sciences-china\",\"volume\":\"152 \",\"pages\":\"Pages 577-583\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Sciences-china\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1001074224003188\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Sciences-china","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001074224003188","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Ultra-small cesium silver bismuth bromide quantum dots fabricated by modified hot-injection method for highly efficient degradation of contaminants in organic solvent
Lead-free halide perovskite material has drawn fast-growing interest due to its superior solar-conversion efficiency and nontoxic nature. In this work, we have successfully fabricated cesium silver bismuth bromide (Cs2AgBiBr6) quantum dots utilizing the hot injection method. The as-synthesized quantum dots were characterized by combined techniques, which showed remarkable visible-light photocatalytic activity for organic dyes and antibiotic degradation in ethanol. Specifically, about 97% of rhodamine B and methyl orange may be removed within 10 min and 30 min, respectively. Additionally, 60% of antibiotic residue of tetracycline hydrochloride is degraded in 30 min which is 7 times more than that on commercial titania (P25). The reactive species for the photodegradation are determined through capture experiments, and a reaction mechanism is proposed accordingly. This work provides a novel photocatalyst for the selective removal of diverse organic contaminants in ethanol and an alternative for the potential application of lead-free halide perovskites.
期刊介绍:
The Journal of Environmental Sciences is an international journal started in 1989. The journal is devoted to publish original, peer-reviewed research papers on main aspects of environmental sciences, such as environmental chemistry, environmental biology, ecology, geosciences and environmental physics. Appropriate subjects include basic and applied research on atmospheric, terrestrial and aquatic environments, pollution control and abatement technology, conservation of natural resources, environmental health and toxicology. Announcements of international environmental science meetings and other recent information are also included.