超越界限:结构化和非结构化信息源问题解答的类人方法

Jens Lehmann, Dhananjay Bhandiwad, Preetam Gattogi, S. Vahdati
{"title":"超越界限:结构化和非结构化信息源问题解答的类人方法","authors":"Jens Lehmann, Dhananjay Bhandiwad, Preetam Gattogi, S. Vahdati","doi":"10.1162/tacl_a_00671","DOIUrl":null,"url":null,"abstract":"Abstract Answering factual questions from heterogenous sources, such as graphs and text, is a key capacity of intelligent systems. Current approaches either (i) perform question answering over text and structured sources as separate pipelines followed by a merge step or (ii) provide an early integration, giving up the strengths of particular information sources. To solve this problem, we present “HumanIQ”, a method that teaches language models to dynamically combine retrieved information by imitating how humans use retrieval tools. Our approach couples a generic method for gathering human demonstrations of tool use with adaptive few-shot learning for tool augmented models. We show that HumanIQ confers significant benefits, including i) reducing the error rate of our strongest baseline (GPT-4) by over 50% across 3 benchmarks, (ii) improving human preference over responses from vanilla GPT-4 (45.3% wins, 46.7% ties, 8.0% loss), and (iii) outperforming numerous task-specific baselines.","PeriodicalId":506323,"journal":{"name":"Transactions of the Association for Computational Linguistics","volume":"14 4","pages":"786-802"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Beyond Boundaries: A Human-like Approach for Question Answering over Structured and Unstructured Information Sources\",\"authors\":\"Jens Lehmann, Dhananjay Bhandiwad, Preetam Gattogi, S. Vahdati\",\"doi\":\"10.1162/tacl_a_00671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Answering factual questions from heterogenous sources, such as graphs and text, is a key capacity of intelligent systems. Current approaches either (i) perform question answering over text and structured sources as separate pipelines followed by a merge step or (ii) provide an early integration, giving up the strengths of particular information sources. To solve this problem, we present “HumanIQ”, a method that teaches language models to dynamically combine retrieved information by imitating how humans use retrieval tools. Our approach couples a generic method for gathering human demonstrations of tool use with adaptive few-shot learning for tool augmented models. We show that HumanIQ confers significant benefits, including i) reducing the error rate of our strongest baseline (GPT-4) by over 50% across 3 benchmarks, (ii) improving human preference over responses from vanilla GPT-4 (45.3% wins, 46.7% ties, 8.0% loss), and (iii) outperforming numerous task-specific baselines.\",\"PeriodicalId\":506323,\"journal\":{\"name\":\"Transactions of the Association for Computational Linguistics\",\"volume\":\"14 4\",\"pages\":\"786-802\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Association for Computational Linguistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1162/tacl_a_00671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Association for Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/tacl_a_00671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要 从图形和文本等异源回答事实问题是智能系统的一项关键能力。目前的方法要么是:(i) 将文本和结构化信息源作为单独的管道执行问题解答,然后再进行合并;要么是:提供早期整合,放弃特定信息源的优势。为了解决这个问题,我们提出了 "HumanIQ",这是一种通过模仿人类使用检索工具的方式,教语言模型动态合并检索信息的方法。我们的方法将收集人类使用工具演示的通用方法与工具增强模型的自适应少量学习相结合。我们的研究表明,HumanIQ 具有显著的优势,包括 i) 在 3 个基准测试中将我们最强基线(GPT-4)的错误率降低了 50%以上;ii) 提高了人类对普通 GPT-4 响应的偏好度(45.3% 的胜率、46.7% 的平局率、8.0% 的损失率);iii) 优于众多特定任务基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Beyond Boundaries: A Human-like Approach for Question Answering over Structured and Unstructured Information Sources
Abstract Answering factual questions from heterogenous sources, such as graphs and text, is a key capacity of intelligent systems. Current approaches either (i) perform question answering over text and structured sources as separate pipelines followed by a merge step or (ii) provide an early integration, giving up the strengths of particular information sources. To solve this problem, we present “HumanIQ”, a method that teaches language models to dynamically combine retrieved information by imitating how humans use retrieval tools. Our approach couples a generic method for gathering human demonstrations of tool use with adaptive few-shot learning for tool augmented models. We show that HumanIQ confers significant benefits, including i) reducing the error rate of our strongest baseline (GPT-4) by over 50% across 3 benchmarks, (ii) improving human preference over responses from vanilla GPT-4 (45.3% wins, 46.7% ties, 8.0% loss), and (iii) outperforming numerous task-specific baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Beyond Boundaries: A Human-like Approach for Question Answering over Structured and Unstructured Information Sources Addressing the Binning Problem in Calibration Assessment through Scalar Annotations An Energy-based Model for Word-level AutoCompletion in Computer-aided Translation Addressing the Binning Problem in Calibration Assessment through Scalar Annotations An Energy-based Model for Word-level AutoCompletion in Computer-aided Translation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1