{"title":"为 J-PARC μ介子 g - 2/EDM 实验开发μ介子直线加速器","authors":"Y. Takeuchi","doi":"10.1016/j.nuclphysbps.2024.03.003","DOIUrl":null,"url":null,"abstract":"<div><p>At Japan Proton Accelerator Research Complex (J-PARC), a muon linac is being developed for future muon <span><math><mi>g</mi><mo>−</mo><mn>2</mn></math></span>/Electric Dipole Moment (EDM) experiments. The muon linac starts with an ultra-slow muon (USM) source that generates muons with an extremely small momentum of 3 keV/c (kinetic energy W=25 meV) by laser ionization of thermal muonium. The generated USMs are accelerated to 5.6 keV by an electrostatic field and injected into a radio frequency quadrupole (RFQ). The injected muons are accelerated to 0.34 MeV by the 324-MHz RFQ. Then, the energy of the muon beam is boosted to 4.5 MeV with a 324-MHz interdigital H-type drift tube linac (IH-DTL). Following the IH-DTL, 1296-MHz disk-and-washer (DAW) structures accelerate the muon up to 40 MeV. Finally, the muons are accelerated from 40 MeV to 212 MeV using a 2592-MHz disk-loaded traveling wave structure (DLS). In this paper, details of the linac design and the recent progress toward the realization of the world's first muon linac will be discussed.</p></div>","PeriodicalId":37968,"journal":{"name":"Nuclear and Particle Physics Proceedings","volume":"345 ","pages":"Pages 10-15"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a muon linac for the J-PARC Muon g − 2/EDM experiment\",\"authors\":\"Y. Takeuchi\",\"doi\":\"10.1016/j.nuclphysbps.2024.03.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>At Japan Proton Accelerator Research Complex (J-PARC), a muon linac is being developed for future muon <span><math><mi>g</mi><mo>−</mo><mn>2</mn></math></span>/Electric Dipole Moment (EDM) experiments. The muon linac starts with an ultra-slow muon (USM) source that generates muons with an extremely small momentum of 3 keV/c (kinetic energy W=25 meV) by laser ionization of thermal muonium. The generated USMs are accelerated to 5.6 keV by an electrostatic field and injected into a radio frequency quadrupole (RFQ). The injected muons are accelerated to 0.34 MeV by the 324-MHz RFQ. Then, the energy of the muon beam is boosted to 4.5 MeV with a 324-MHz interdigital H-type drift tube linac (IH-DTL). Following the IH-DTL, 1296-MHz disk-and-washer (DAW) structures accelerate the muon up to 40 MeV. Finally, the muons are accelerated from 40 MeV to 212 MeV using a 2592-MHz disk-loaded traveling wave structure (DLS). In this paper, details of the linac design and the recent progress toward the realization of the world's first muon linac will be discussed.</p></div>\",\"PeriodicalId\":37968,\"journal\":{\"name\":\"Nuclear and Particle Physics Proceedings\",\"volume\":\"345 \",\"pages\":\"Pages 10-15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear and Particle Physics Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405601424000646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear and Particle Physics Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405601424000646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Development of a muon linac for the J-PARC Muon g − 2/EDM experiment
At Japan Proton Accelerator Research Complex (J-PARC), a muon linac is being developed for future muon /Electric Dipole Moment (EDM) experiments. The muon linac starts with an ultra-slow muon (USM) source that generates muons with an extremely small momentum of 3 keV/c (kinetic energy W=25 meV) by laser ionization of thermal muonium. The generated USMs are accelerated to 5.6 keV by an electrostatic field and injected into a radio frequency quadrupole (RFQ). The injected muons are accelerated to 0.34 MeV by the 324-MHz RFQ. Then, the energy of the muon beam is boosted to 4.5 MeV with a 324-MHz interdigital H-type drift tube linac (IH-DTL). Following the IH-DTL, 1296-MHz disk-and-washer (DAW) structures accelerate the muon up to 40 MeV. Finally, the muons are accelerated from 40 MeV to 212 MeV using a 2592-MHz disk-loaded traveling wave structure (DLS). In this paper, details of the linac design and the recent progress toward the realization of the world's first muon linac will be discussed.
期刊介绍:
Nuclear and Particle Physics Proceedings is the premier publication outlet for the proceedings of key conferences on nuclear and high-energy physics and related areas. The series covers both large international conferences and topical meetings. The newest discoveries and the latest developments, reported at carefully selected meetings, are published covering experimental as well as theoretical particle physics, nuclear and hadronic physics, cosmology, astrophysics and gravitation, field theory and statistical systems, and physical mathematics.