首页 > 最新文献

Nuclear and Particle Physics Proceedings最新文献

英文 中文
Forward physics at LHC: Intersections with astrophysics 大型强子对撞机的前沿物理学:与天体物理学的交叉
Q4 Physics and Astronomy Pub Date : 2024-12-01 DOI: 10.1016/j.nuclphysbps.2024.11.006
Aldo Penzo
LHC pp collisions at s=14TeV correspond to 1017eV in the cosmic ray spectrum, reaching regions (f.i. the “knee”) whose interpretation is still debated, and whose models may be strongly influenced by LHC results on forward hadronic production, for instance as measured with CMS forward calorimeters. Other astrophysics problems that may receive a decisive input from LHC, and in particular HL-LHC, concern the interpretation of dark matter and dark energy in the universe, in correspondence with BSM (Beyond Standard Model) particles that may be detected as LLP (Long-Lived Particles). LLP searches have been generally done up to now at low pseudorapidity η, as exemplified by some CMS recent results. There may be however reasons why detectors in the forward direction of LHC experiments, could be better suited for these searches, at least for some lifetime ranges, due to large relativistic boosts of the produced particles at LHC energies in the forward region. Considering the CMS forward detectors, their role for some of these searches and corresponding signatures are discussed. Additional possibilities of instrumenting specific regions of the LHC tunnel near the interaction point IP5, where CMS is installed, are discussed.
大型强子对撞机在s=14TeV的pp碰撞对应于宇宙射线谱中的1017eV,到达的区域(如“膝部”)的解释仍有争议,其模型可能受到大型强子对撞机的正向强子产生结果的强烈影响,例如用CMS正向量热计测量的结果。其他可能从大型强子对撞机(特别是HL-LHC)获得决定性输入的天体物理学问题,涉及宇宙中暗物质和暗能量的解释,与BSM(超越标准模型)粒子对应,这些粒子可能被检测为LLP(长寿命粒子)。到目前为止,LLP搜索通常是在低伪快速η下进行的,正如一些CMS最近的结果所证明的那样。然而,在LHC实验的前方方向上的探测器可能更适合于这些搜索,至少在某些寿命范围内,这可能是有原因的,因为在前方区域,LHC能量产生的粒子有很大的相对论性增强。考虑到CMS前向检测器,讨论了它们在其中一些搜索中的作用和相应的签名。讨论了在LHC隧道中安装CMS的交互点IP5附近对特定区域进行仪器测量的其他可能性。
{"title":"Forward physics at LHC: Intersections with astrophysics","authors":"Aldo Penzo","doi":"10.1016/j.nuclphysbps.2024.11.006","DOIUrl":"10.1016/j.nuclphysbps.2024.11.006","url":null,"abstract":"<div><div>LHC pp collisions at <span><math><msqrt><mrow><mi>s</mi></mrow></msqrt><mo>=</mo><mn>14</mn><mspace></mspace><mrow><mi>TeV</mi></mrow></math></span> correspond to <span><math><msup><mrow><mn>10</mn></mrow><mrow><mn>17</mn></mrow></msup><mspace></mspace><mrow><mi>eV</mi></mrow></math></span> in the cosmic ray spectrum, reaching regions (f.i. the “knee”) whose interpretation is still debated, and whose models may be strongly influenced by LHC results on forward hadronic production, for instance as measured with CMS forward calorimeters. Other astrophysics problems that may receive a decisive input from LHC, and in particular HL-LHC, concern the interpretation of dark matter and dark energy in the universe, in correspondence with BSM (Beyond Standard Model) particles that may be detected as LLP (Long-Lived Particles). LLP searches have been generally done up to now at low pseudorapidity <em>η</em>, as exemplified by some CMS recent results. There may be however reasons why detectors in the forward direction of LHC experiments, could be better suited for these searches, at least for some lifetime ranges, due to large relativistic boosts of the produced particles at LHC energies in the forward region. Considering the CMS forward detectors, their role for some of these searches and corresponding signatures are discussed. Additional possibilities of instrumenting specific regions of the LHC tunnel near the interaction point IP5, where CMS is installed, are discussed.</div></div>","PeriodicalId":37968,"journal":{"name":"Nuclear and Particle Physics Proceedings","volume":"347 ","pages":"Pages 116-125"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142748550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
QCD aspects in W and Z production with ATLAS 使用ATLAS进行W和Z生产的QCD方面的工作
Q4 Physics and Astronomy Pub Date : 2024-12-01 DOI: 10.1016/j.nuclphysbps.2024.11.005
Alberto Lorenzo Rescia , ATLAS Collaboration
The ATLAS collaboration has used the W- and Z-boson production processes to perform a range of precision measurements providing important tests of perturbative QCD and information about the parton distribution functions for quarks within the proton. This contribution presents recent differential Z+heavy flavour jets results, measurements of inclusive, differential cross sections for the production of missing transverse momentum plus jets, measurements of the Drell-Yan cross section as a function of transverse momentum based on low pileup data, total W- and Z-boson cross section measurements at 13.6 TeV.
ATLAS合作使用W-和z -玻色子产生过程进行了一系列精确测量,提供了微扰QCD的重要测试和关于质子内夸克的部分子分布函数的信息。本文介绍了最近的微分Z+重味射流的结果,测量了产生缺失的横向动量加上射流的微分截面,基于低堆积数据的Drell-Yan截面作为横向动量的函数的测量,13.6 TeV下W和Z玻色子的总截面测量。
{"title":"QCD aspects in W and Z production with ATLAS","authors":"Alberto Lorenzo Rescia ,&nbsp;ATLAS Collaboration","doi":"10.1016/j.nuclphysbps.2024.11.005","DOIUrl":"10.1016/j.nuclphysbps.2024.11.005","url":null,"abstract":"<div><div>The ATLAS collaboration has used the <em>W</em>- and <em>Z</em>-boson production processes to perform a range of precision measurements providing important tests of perturbative QCD and information about the parton distribution functions for quarks within the proton. This contribution presents recent differential <em>Z</em>+heavy flavour jets results, measurements of inclusive, differential cross sections for the production of missing transverse momentum plus jets, measurements of the Drell-Yan cross section as a function of transverse momentum based on low pileup data, total <em>W</em>- and <em>Z</em>-boson cross section measurements at 13.6 TeV.</div></div>","PeriodicalId":37968,"journal":{"name":"Nuclear and Particle Physics Proceedings","volume":"347 ","pages":"Pages 98-104"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142748548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
aμ|l.ohvp, QCD power corrections and αs from e+e− → Hadrons 一个μl |。e+e− → 强子的ohvp, QCD功率修正和αs
Q4 Physics and Astronomy Pub Date : 2024-12-01 DOI: 10.1016/j.nuclphysbps.2024.11.007
Stephan Narison
<div><div>In this talk, I review the results obtained recently in Ref. <span><span>[1]</span></span>. <em>First,</em> we estimate the LO hadronic vacuum polarization contribution to the muon and <em>τ</em> anomalous magnetic moments to be: <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>μ</mi></mrow></msub><msubsup><mrow><mo>|</mo></mrow><mrow><mi>l</mi><mo>.</mo><mi>o</mi></mrow><mrow><mi>h</mi><mi>v</mi><mi>p</mi></mrow></msubsup><mo>=</mo><mo>(</mo><mn>7036.5</mn><mo>±</mo><mn>38.9</mn><mo>)</mo><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>11</mn></mrow></msup></math></span>, <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>τ</mi></mrow></msub><msubsup><mrow><mo>|</mo></mrow><mrow><mi>l</mi><mo>.</mo><mi>o</mi></mrow><mrow><mi>h</mi><mi>v</mi><mi>p</mi></mrow></msubsup><mo>=</mo><mo>(</mo><mn>3494.8</mn><mo>±</mo><mn>24.7</mn><mo>)</mo><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>9</mn></mrow></msup></math></span> (see Table 1) leading to: <span><math><mi>Δ</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>≡</mo><msubsup><mrow><mi>a</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mi>e</mi><mi>x</mi><mi>p</mi></mrow></msubsup><mo>−</mo><msubsup><mrow><mi>a</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mi>S</mi><mi>M</mi></mrow></msubsup><mo>=</mo><mo>(</mo><mn>143</mn><mo>±</mo><msub><mrow><mn>42</mn></mrow><mrow><mi>t</mi><mi>h</mi></mrow></msub><mo>±</mo><msub><mrow><mn>22</mn></mrow><mrow><mi>e</mi><mi>x</mi><mi>p</mi></mrow></msub><mo>)</mo><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>11</mn></mrow></msup></math></span> which is about 3<em>σ</em> discrepancy between the SM predictions and experiment. One also finds: <span><math><msup><mrow><mi>α</mi></mrow><mrow><mo>(</mo><mn>5</mn><mo>)</mo></mrow></msup><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>)</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>h</mi><mi>a</mi><mi>d</mi></mrow></msub><mo>=</mo><mo>(</mo><mn>2766.3</mn><mo>±</mo><mn>4.5</mn><mo>)</mo><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>5</mn></mrow></msup></math></span>. <em>Second,</em> we estimate the QCD power corrections up to dimension 20 from the ratio of Laplace sum rule and from <em>τ</em>-like decay high moments (see Table 3). We do not observe any exponential growth of their size which may not favour a duality violation of the spectral function. We obtain <span><math><mo>〈</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>〉</mo><mo>=</mo><mo>(</mo><mn>7.8</mn><mo>±</mo><mn>3.5</mn><mo>)</mo><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mspace></mspace><msup><mrow><mtext>GeV</mtext></mrow><mrow><mn>4</mn></mrow></msup></math></span> in agreement with the more precise one from heavy quark sum rules, while <span><math><mi>ρ</mi><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><msup><mrow><mo>〈</mo><mover><mrow><
在这次演讲中,我回顾了最近在Ref. b[1]中获得的结果。首先,我们估计LO强子真空极化对μ子和τ异常磁矩的贡献为:aμ|l.ohvp=(7036.5±38.9)×10−11,aτ|l.ohvp=(3494.8±24.7)×10−9(见表1),导致:Δaμ≡aμexp−aμSM=(143±42±22exp)×10−11,这与SM预测和实验之间的误差约为3σ。α(5)(MZ)| =(2766.3±4.5)×10−5。其次,我们从拉普拉斯和规则的比率和τ样衰减高矩(见表3)估计到20维的QCD功率修正。我们没有观察到它们的大小的任何指数增长,这可能不利于谱函数的对偶性违反。我们得到< αsG2 > =(7.8±3.5)×10−2GeV4符合重夸克和规则,而ραs < ψ¯ψ > 2=(5.98±0.64)×10−4GeV6证实了一个因子ρ≃6违反了四夸克凝聚分解。第三,利用先前的凝析油值,从最低τ-衰变braten - sn - pich (BNP)矩中重新提取αs,得到αs4阶:αs(Mτ)=0.3081(86)[resp.0.3260(79)]。轮廓改进(CI)] PT系列。我们还证明了超出Shifman-Vainshtein-Zakharov (SVZ)展开式的贡献可以忽略不计。
{"title":"aμ|l.ohvp, QCD power corrections and αs from e+e− → Hadrons","authors":"Stephan Narison","doi":"10.1016/j.nuclphysbps.2024.11.007","DOIUrl":"10.1016/j.nuclphysbps.2024.11.007","url":null,"abstract":"&lt;div&gt;&lt;div&gt;In this talk, I review the results obtained recently in Ref. &lt;span&gt;&lt;span&gt;[1]&lt;/span&gt;&lt;/span&gt;. &lt;em&gt;First,&lt;/em&gt; we estimate the LO hadronic vacuum polarization contribution to the muon and &lt;em&gt;τ&lt;/em&gt; anomalous magnetic moments to be: &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;7036.5&lt;/mn&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;mn&gt;38.9&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;10&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;11&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;3494.8&lt;/mn&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;mn&gt;24.7&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;10&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;9&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; (see Table 1) leading to: &lt;span&gt;&lt;math&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;≡&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;143&lt;/mn&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mn&gt;42&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mn&gt;22&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;10&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;11&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; which is about 3&lt;em&gt;σ&lt;/em&gt; discrepancy between the SM predictions and experiment. One also finds: &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2766.3&lt;/mn&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;mn&gt;4.5&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;10&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;. &lt;em&gt;Second,&lt;/em&gt; we estimate the QCD power corrections up to dimension 20 from the ratio of Laplace sum rule and from &lt;em&gt;τ&lt;/em&gt;-like decay high moments (see Table 3). We do not observe any exponential growth of their size which may not favour a duality violation of the spectral function. We obtain &lt;span&gt;&lt;math&gt;&lt;mo&gt;〈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;〉&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;7.8&lt;/mn&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;mn&gt;3.5&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;10&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mtext&gt;GeV&lt;/mtext&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; in agreement with the more precise one from heavy quark sum rules, while &lt;span&gt;&lt;math&gt;&lt;mi&gt;ρ&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;〈&lt;/mo&gt;&lt;mover&gt;&lt;mrow&gt;&lt;","PeriodicalId":37968,"journal":{"name":"Nuclear and Particle Physics Proceedings","volume":"347 ","pages":"Pages 105-115"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142748549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preface - QCD 24 Proceedings 序言 - QCD 24 会议记录
Q4 Physics and Astronomy Pub Date : 2024-11-12 DOI: 10.1016/j.nuclphysbps.2024.11.002
Stephan Narison
{"title":"Preface - QCD 24 Proceedings","authors":"Stephan Narison","doi":"10.1016/j.nuclphysbps.2024.11.002","DOIUrl":"10.1016/j.nuclphysbps.2024.11.002","url":null,"abstract":"","PeriodicalId":37968,"journal":{"name":"Nuclear and Particle Physics Proceedings","volume":"347 ","pages":"Page 97"},"PeriodicalIF":0.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142704372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Closing Address—QCD24 Proceedings 闭幕词--QCD24 会议记录
Q4 Physics and Astronomy Pub Date : 2024-11-12 DOI: 10.1016/j.nuclphysbps.2024.11.004
Stephan Narison
{"title":"Closing Address—QCD24 Proceedings","authors":"Stephan Narison","doi":"10.1016/j.nuclphysbps.2024.11.004","DOIUrl":"10.1016/j.nuclphysbps.2024.11.004","url":null,"abstract":"","PeriodicalId":37968,"journal":{"name":"Nuclear and Particle Physics Proceedings","volume":"347 ","pages":"Page 94"},"PeriodicalIF":0.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142704370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Opening address - QCD24 Proceedings 开幕致辞 - QCD24 会议记录
Q4 Physics and Astronomy Pub Date : 2024-11-12 DOI: 10.1016/j.nuclphysbps.2024.11.003
Stephan Narison
{"title":"Opening address - QCD24 Proceedings","authors":"Stephan Narison","doi":"10.1016/j.nuclphysbps.2024.11.003","DOIUrl":"10.1016/j.nuclphysbps.2024.11.003","url":null,"abstract":"","PeriodicalId":37968,"journal":{"name":"Nuclear and Particle Physics Proceedings","volume":"347 ","pages":"Pages 95-96"},"PeriodicalIF":0.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142704371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent results on hadron spectroscopy at LHCb 大型强子对撞机b的强子光谱学最新成果
Q4 Physics and Astronomy Pub Date : 2024-11-12 DOI: 10.1016/j.nuclphysbps.2024.11.001
Liming Zhang
The most recent LHCb results related to heavy hadron spectroscopy, encompassing both conventional and exotic states, have been reported. These results include the first observation the radiative decay χc1(3872)ψ(2S)γ, the observation of J/ψϕ resonances in a new production environment, observation of new charmonium(-like) states in D±D systems, and several pentaquark-related searches.
据报道,大型强子对撞机b取得了与重强子光谱学有关的最新成果,其中包括常规态和奇异态。这些结果包括首次观测到辐射衰变χc1(3872)→ψ(2S)γ,在新的产生环境中观测到J/ψj共振,在D⁎±D∓系统中观测到新的粲(类)态,以及一些与五夸克相关的搜索。
{"title":"Recent results on hadron spectroscopy at LHCb","authors":"Liming Zhang","doi":"10.1016/j.nuclphysbps.2024.11.001","DOIUrl":"10.1016/j.nuclphysbps.2024.11.001","url":null,"abstract":"<div><div>The most recent LHCb results related to heavy hadron spectroscopy, encompassing both conventional and exotic states, have been reported. These results include the first observation the radiative decay <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>c</mi><mn>1</mn></mrow></msub><mo>(</mo><mn>3872</mn><mo>)</mo><mo>→</mo><mi>ψ</mi><mo>(</mo><mn>2</mn><mi>S</mi><mo>)</mo><mi>γ</mi></math></span>, the observation of <span><math><mi>J</mi><mo>/</mo><mi>ψ</mi><mi>ϕ</mi></math></span> resonances in a new production environment, observation of new charmonium(-like) states in <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>⁎</mo><mo>±</mo></mrow></msup><msup><mrow><mi>D</mi></mrow><mrow><mo>∓</mo></mrow></msup></math></span> systems, and several pentaquark-related searches.</div></div>","PeriodicalId":37968,"journal":{"name":"Nuclear and Particle Physics Proceedings","volume":"347 ","pages":"Pages 90-93"},"PeriodicalIF":0.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A gauge-invariant measure for gauge fields on CP2 CP2 上规量场的规不变度量
Q4 Physics and Astronomy Pub Date : 2024-10-28 DOI: 10.1016/j.nuclphysbps.2024.10.006
Antonina Maj
We consider four-dimensional non-Abelian gauge theory living on a complex projective space CP2 as a way of gaining insights into (3+1)-dimensional QCD. In particular, we use a complex parametrization of gauge fields on which gauge transformations act homogeneously. This allows us to factor out the gauge degrees of freedom from the volume element leading to a manifestly gauge-invariant measure for the gauge-orbit space (the space of all gauge potentials modulo gauge transformations). The terms appearing in the measure that are of particular interest are mass-like terms for the gauge-invariant modes of the gauge fields. Since these mass terms come with dimensional parameters they are significant in the context of dimensional transmutation. Moreover, the existence of local gauge-invariant mass terms on CP2 could be related to Schwinger-Dyson calculations of the soft gluon mass. Finally, we argue that there is a kinematic regime in which the theory can be approximated by a 4d Wess-Zumino-Witten (WZW) theory. This result can be used to draw similarities between the mechanism of confinement in four and (2+1) dimensions.
我们考虑生活在复投影空间 CP2 上的四维非阿贝尔规理论,以此来深入了解 (3+1)-dimensional QCD。特别是,我们使用了轨距场的复参数化,其上的轨距变换是均匀作用的。这样,我们就可以从体积元素中剔除量规自由度,从而得到量规轨道空间(所有量规势模量规变换的空间)的明显量规不变度量。该量度中出现的特别值得关注的项是轨距场的轨距不变模式的质量项。由于这些质量项带有维数参数,因此在维数嬗变中具有重要意义。此外,CP2 上局部规整不变质量项的存在可能与软胶子质量的施文格-戴森计算有关。最后,我们认为存在一个运动学机制,在这个机制中,理论可以用 4d Wess-Zumino-Witten(WZW)理论来近似。这一结果可用于总结四维和(2+1)维约束机制的相似性。
{"title":"A gauge-invariant measure for gauge fields on CP2","authors":"Antonina Maj","doi":"10.1016/j.nuclphysbps.2024.10.006","DOIUrl":"10.1016/j.nuclphysbps.2024.10.006","url":null,"abstract":"<div><div>We consider four-dimensional non-Abelian gauge theory living on a complex projective space <span><math><msup><mrow><mi>CP</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> as a way of gaining insights into (3+1)-dimensional QCD. In particular, we use a complex parametrization of gauge fields on which gauge transformations act homogeneously. This allows us to factor out the gauge degrees of freedom from the volume element leading to a manifestly gauge-invariant measure for the gauge-orbit space (the space of all gauge potentials modulo gauge transformations). The terms appearing in the measure that are of particular interest are mass-like terms for the gauge-invariant modes of the gauge fields. Since these mass terms come with dimensional parameters they are significant in the context of dimensional transmutation. Moreover, the existence of local gauge-invariant mass terms on <span><math><msup><mrow><mi>CP</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> could be related to Schwinger-Dyson calculations of the soft gluon mass. Finally, we argue that there is a kinematic regime in which the theory can be approximated by a 4d Wess-Zumino-Witten (WZW) theory. This result can be used to draw similarities between the mechanism of confinement in four and (2+1) dimensions.</div></div>","PeriodicalId":37968,"journal":{"name":"Nuclear and Particle Physics Proceedings","volume":"347 ","pages":"Pages 62-67"},"PeriodicalIF":0.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent results and upgrade of the ALICE muon spectrometer ALICE µ子光谱仪的最新成果和升级换代
Q4 Physics and Astronomy Pub Date : 2024-10-28 DOI: 10.1016/j.nuclphysbps.2024.10.008
Luca Quaglia, ALICE collaboration
The ALICE experiment at the CERN Large Hadron Collider (LHC) is a multi-purpose particle detector, mainly focused on the study of quark-gluon plasma (QGP) in heavy-ion collisions. In the forward rapidity region, 2.5 < y < 4, ALICE is equipped with a muon spectrometer (MS), which allows to study quarkonia and open heavy-flavor particles, both key probes to investigate QGP properties.
Although in LHC Run 1 and 2 many important results were achieved, the front absorber of the MS represented a limit to the physics program, due to the multiple scattering and energy loss in the material. To assess this limitation, a new forward vertex tracker (Muon Forward Tracker, MFT) was installed between the inner tracking system (ITS) and the front absorber. This has enhanced the MS physics performance, enabling the separation of prompt/non-prompt charmonium production at forward rapidity. It will also allow one to reduce the combinatorial background from semi-leptonic decays of kaons and pions. Finally, it will greatly improve the invariant-mass resolution of the low-mass dimuon pairs.
Moreover, during the ongoing LHC Run 3, the rate of Pb–Pb collisions has been increased from 10 kHz (in Run 2) up to 50 kHz, allowing to collect a data sample about 5 times larger than the one recorded in Run 2.
This contribution will provide a brief overview of the MS upgrades and it will focus on the expected physics performance during the LHC Run 3. Some of the preliminary results already obtained will also be shown.
欧洲核子研究中心(CERN)大型强子对撞机(LHC)上的 ALICE 实验是一个多用途粒子探测器,主要用于研究重离子对撞中的夸克-胶子等离子体(QGP)。在2.5 < y < 4的正向快速区,ALICE配备了一个μ介子分光计(MS),可以研究夸克态和开放重味粒子,这两种粒子都是研究QGP特性的关键探测器。虽然在LHC运行1和2中取得了许多重要成果,但由于材料中的多重散射和能量损失,MS的前吸收器对物理项目构成了限制。为了评估这一限制,在内部跟踪系统(ITS)和前吸收器之间安装了一个新的前顶点跟踪器(Muon Forward Tracker,MFT)。这增强了 MS 的物理性能,使其能够在前向速度下分离迅速/非迅速粲的产生。它还可以减少来自高子和小离子半轻子衰变的组合背景。此外,在正在进行的大型强子对撞机运行 3 期间,Pb-Pb 对撞的速率已经从运行 2 期间的 10 kHz 提高到了 50 kHz,从而可以收集到比运行 2 期间大 5 倍的数据样本。
{"title":"Recent results and upgrade of the ALICE muon spectrometer","authors":"Luca Quaglia,&nbsp;ALICE collaboration","doi":"10.1016/j.nuclphysbps.2024.10.008","DOIUrl":"10.1016/j.nuclphysbps.2024.10.008","url":null,"abstract":"<div><div>The ALICE experiment at the CERN Large Hadron Collider (LHC) is a multi-purpose particle detector, mainly focused on the study of quark-gluon plasma (QGP) in heavy-ion collisions. In the forward rapidity region, 2.5 &lt; y &lt; 4, ALICE is equipped with a muon spectrometer (MS), which allows to study quarkonia and open heavy-flavor particles, both key probes to investigate QGP properties.</div><div>Although in LHC Run 1 and 2 many important results were achieved, the front absorber of the MS represented a limit to the physics program, due to the multiple scattering and energy loss in the material. To assess this limitation, a new forward vertex tracker (Muon Forward Tracker, MFT) was installed between the inner tracking system (ITS) and the front absorber. This has enhanced the MS physics performance, enabling the separation of prompt/non-prompt charmonium production at forward rapidity. It will also allow one to reduce the combinatorial background from semi-leptonic decays of kaons and pions. Finally, it will greatly improve the invariant-mass resolution of the low-mass dimuon pairs.</div><div>Moreover, during the ongoing LHC Run 3, the rate of Pb–Pb collisions has been increased from 10 kHz (in Run 2) up to 50 kHz, allowing to collect a data sample about 5 times larger than the one recorded in Run 2.</div><div>This contribution will provide a brief overview of the MS upgrades and it will focus on the expected physics performance during the LHC Run 3. Some of the preliminary results already obtained will also be shown.</div></div>","PeriodicalId":37968,"journal":{"name":"Nuclear and Particle Physics Proceedings","volume":"347 ","pages":"Pages 75-81"},"PeriodicalIF":0.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
QCD chemistry: Remarks on diquarks QCD 化学:关于二夸克的评论
Q4 Physics and Astronomy Pub Date : 2024-10-28 DOI: 10.1016/j.nuclphysbps.2024.10.007
Mikhail Shifman
I review the status of “good diquarks” in light-quark hadronic structure and argue that the heavy-light diquarks play no role in the structure of b-containing hadrons (including exotics), and their role in c-containing hadrons is likely to be minimal if at all. I explain that a crucial phenomenological proof can be obtained from weak decays of b-containing hadrons, such Λb.
我回顾了 "好二夸克 "在轻夸克强子结构中的地位,并认为重轻二夸克在含b强子(包括外来强子)的结构中不起作用,它们在含c强子中的作用可能微乎其微。我解释说,一个关键的现象学证明可以从含b强子(如Λb)的弱衰变中获得。
{"title":"QCD chemistry: Remarks on diquarks","authors":"Mikhail Shifman","doi":"10.1016/j.nuclphysbps.2024.10.007","DOIUrl":"10.1016/j.nuclphysbps.2024.10.007","url":null,"abstract":"<div><div>I review the status of “good diquarks” in light-quark hadronic structure and argue that the heavy-light diquarks play no role in the structure of <em>b</em>-containing hadrons (including exotics), and their role in <em>c</em>-containing hadrons is likely to be minimal if at all. I explain that a crucial phenomenological proof can be obtained from weak decays of <em>b</em>-containing hadrons, such <span><math><msub><mrow><mi>Λ</mi></mrow><mrow><mi>b</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":37968,"journal":{"name":"Nuclear and Particle Physics Proceedings","volume":"347 ","pages":"Pages 86-89"},"PeriodicalIF":0.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nuclear and Particle Physics Proceedings
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1