探索制造思维机器的生物挑战

IF 2.1 3区 心理学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Cognitive Systems Research Pub Date : 2024-06-16 DOI:10.1016/j.cogsys.2024.101260
Christ Devia , Camilo Jara Do Nascimento , Samuel Madariaga , Pedro.E. Maldonado , Catalina Murúa , Rodrigo C. Vergara
{"title":"探索制造思维机器的生物挑战","authors":"Christ Devia ,&nbsp;Camilo Jara Do Nascimento ,&nbsp;Samuel Madariaga ,&nbsp;Pedro.E. Maldonado ,&nbsp;Catalina Murúa ,&nbsp;Rodrigo C. Vergara","doi":"10.1016/j.cogsys.2024.101260","DOIUrl":null,"url":null,"abstract":"<div><p>This article presents a transdisciplinary analysis of the challenges in fusing neuroscience concepts with artificial intelligence (AI) to create AI systems inspired by biological cognition. We explore the structural and functional disparities between the neocortex’s canonical microcircuits and existing AI models, focusing on architectural differences, learning mechanisms, and energy efficiency. The discussion extends to adapting non-goal-oriented learning and dynamic neuronal connections from biological brains to enhance AI’s flexibility and efficiency. This work underscores the potential of neuroscientific insights to revolutionize AI development, advocating for a paradigm shift towards more adaptable and brain-like AI systems. We conclude that there is major room for bioinspiration by focusing on developing architecture, objective functions, and learning rules using a local instead of a global approach.</p></div>","PeriodicalId":55242,"journal":{"name":"Cognitive Systems Research","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring biological challenges in building a thinking machine\",\"authors\":\"Christ Devia ,&nbsp;Camilo Jara Do Nascimento ,&nbsp;Samuel Madariaga ,&nbsp;Pedro.E. Maldonado ,&nbsp;Catalina Murúa ,&nbsp;Rodrigo C. Vergara\",\"doi\":\"10.1016/j.cogsys.2024.101260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article presents a transdisciplinary analysis of the challenges in fusing neuroscience concepts with artificial intelligence (AI) to create AI systems inspired by biological cognition. We explore the structural and functional disparities between the neocortex’s canonical microcircuits and existing AI models, focusing on architectural differences, learning mechanisms, and energy efficiency. The discussion extends to adapting non-goal-oriented learning and dynamic neuronal connections from biological brains to enhance AI’s flexibility and efficiency. This work underscores the potential of neuroscientific insights to revolutionize AI development, advocating for a paradigm shift towards more adaptable and brain-like AI systems. We conclude that there is major room for bioinspiration by focusing on developing architecture, objective functions, and learning rules using a local instead of a global approach.</p></div>\",\"PeriodicalId\":55242,\"journal\":{\"name\":\"Cognitive Systems Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Systems Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389041724000548\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Systems Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389041724000548","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文对神经科学概念与人工智能(AI)的融合所面临的挑战进行了跨学科分析,以创建受生物认知启发的人工智能系统。我们探讨了新皮层典型微电路与现有人工智能模型在结构和功能上的差异,重点关注架构差异、学习机制和能效。讨论延伸到生物大脑中的非目标导向学习和动态神经元连接,以提高人工智能的灵活性和效率。这项工作强调了神经科学的洞察力在彻底改变人工智能发展方面的潜力,倡导向更具适应性和类脑人工智能系统的范式转变。我们的结论是,通过采用局部而非全局的方法,专注于开发架构、目标函数和学习规则,生物启发的空间很大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring biological challenges in building a thinking machine

This article presents a transdisciplinary analysis of the challenges in fusing neuroscience concepts with artificial intelligence (AI) to create AI systems inspired by biological cognition. We explore the structural and functional disparities between the neocortex’s canonical microcircuits and existing AI models, focusing on architectural differences, learning mechanisms, and energy efficiency. The discussion extends to adapting non-goal-oriented learning and dynamic neuronal connections from biological brains to enhance AI’s flexibility and efficiency. This work underscores the potential of neuroscientific insights to revolutionize AI development, advocating for a paradigm shift towards more adaptable and brain-like AI systems. We conclude that there is major room for bioinspiration by focusing on developing architecture, objective functions, and learning rules using a local instead of a global approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognitive Systems Research
Cognitive Systems Research 工程技术-计算机:人工智能
CiteScore
9.40
自引率
5.10%
发文量
40
审稿时长
>12 weeks
期刊介绍: Cognitive Systems Research is dedicated to the study of human-level cognition. As such, it welcomes papers which advance the understanding, design and applications of cognitive and intelligent systems, both natural and artificial. The journal brings together a broad community studying cognition in its many facets in vivo and in silico, across the developmental spectrum, focusing on individual capacities or on entire architectures. It aims to foster debate and integrate ideas, concepts, constructs, theories, models and techniques from across different disciplines and different perspectives on human-level cognition. The scope of interest includes the study of cognitive capacities and architectures - both brain-inspired and non-brain-inspired - and the application of cognitive systems to real-world problems as far as it offers insights relevant for the understanding of cognition. Cognitive Systems Research therefore welcomes mature and cutting-edge research approaching cognition from a systems-oriented perspective, both theoretical and empirically-informed, in the form of original manuscripts, short communications, opinion articles, systematic reviews, and topical survey articles from the fields of Cognitive Science (including Philosophy of Cognitive Science), Artificial Intelligence/Computer Science, Cognitive Robotics, Developmental Science, Psychology, and Neuroscience and Neuromorphic Engineering. Empirical studies will be considered if they are supplemented by theoretical analyses and contributions to theory development and/or computational modelling studies.
期刊最新文献
A mathematical formulation of learner cognition for personalised learning experiences Identification of the emotional component of inner pronunciation: EEG-ERP study Towards emotion-aware intelligent agents by utilizing knowledge graphs of experiences Exploring the impact of virtual reality flight simulations on EEG neural patterns and task performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1