Ju Tian , Huimin You , Jing Ding , Dandan Shi , Chenyan Long , Yanting li , Zhijun Luo , Xiaoying He
{"title":"血小板可能是动脉粥样硬化和伤口愈合过程中上皮/内皮到间质转化的关键调节因子","authors":"Ju Tian , Huimin You , Jing Ding , Dandan Shi , Chenyan Long , Yanting li , Zhijun Luo , Xiaoying He","doi":"10.1016/j.mehy.2024.111397","DOIUrl":null,"url":null,"abstract":"<div><p>Atherosclerosis and wound healing are complex pathophysiological processes involving multiple cell types, including endothelial cells and platelets. Endothelial-to-mesenchymal transition (EndMT) involves the transformation of endothelial cells into mesenchymal cells. This transition serves as a critical mechanism in vascular remodeling, essential for both atherosclerosis pathogenesis and wound healing. On the other hand, epithelial-to-mesenchymal transition (EMT), which involves the transformation of epithelial cells into mesenchymal cells, is crucial for wound healing. Platelets are known to release various growth factors and cytokines which are integral to wound healing and tissue repair, although their direct role in the modulation of EndMT and EMT remains unclear. However, a few studies have shown a potential mechanistic link between platelet activity and these cellular transitions. Since EndMT and EMT play a critical role in vascular remodeling and tissue repair, respectively, it is plausible that these processes are modulated by platelets, which are known for their dynamic and context-dependent release of growth factors and cytokines.<!--> <!-->Therefore, we postulate that platelets significantly impact the progression of atherosclerosis through the modulation of EndMT, and that of wound healing through the regulation of both EndMT and EMT. The influence of platelets on these processes can have both beneficial and detrimental effects. This hypothesis represents a significant advance in our understanding of the complex interplay between platelets, cellular phenotype, and disease pathophysiology. Elucidating the specific mechanisms by which platelets modulate EMT and EndMT could pave the way for innovative therapeutic strategies that harness the body’s innate capacity for repair and regeneration, thereby enhancing clinical outcomes for these conditions.</p></div>","PeriodicalId":18425,"journal":{"name":"Medical hypotheses","volume":"189 ","pages":"Article 111397"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Platelets could be key regulators of epithelial/endothelial-to- mesenchymal transition in atherosclerosis and wound healing\",\"authors\":\"Ju Tian , Huimin You , Jing Ding , Dandan Shi , Chenyan Long , Yanting li , Zhijun Luo , Xiaoying He\",\"doi\":\"10.1016/j.mehy.2024.111397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Atherosclerosis and wound healing are complex pathophysiological processes involving multiple cell types, including endothelial cells and platelets. Endothelial-to-mesenchymal transition (EndMT) involves the transformation of endothelial cells into mesenchymal cells. This transition serves as a critical mechanism in vascular remodeling, essential for both atherosclerosis pathogenesis and wound healing. On the other hand, epithelial-to-mesenchymal transition (EMT), which involves the transformation of epithelial cells into mesenchymal cells, is crucial for wound healing. Platelets are known to release various growth factors and cytokines which are integral to wound healing and tissue repair, although their direct role in the modulation of EndMT and EMT remains unclear. However, a few studies have shown a potential mechanistic link between platelet activity and these cellular transitions. Since EndMT and EMT play a critical role in vascular remodeling and tissue repair, respectively, it is plausible that these processes are modulated by platelets, which are known for their dynamic and context-dependent release of growth factors and cytokines.<!--> <!-->Therefore, we postulate that platelets significantly impact the progression of atherosclerosis through the modulation of EndMT, and that of wound healing through the regulation of both EndMT and EMT. The influence of platelets on these processes can have both beneficial and detrimental effects. This hypothesis represents a significant advance in our understanding of the complex interplay between platelets, cellular phenotype, and disease pathophysiology. Elucidating the specific mechanisms by which platelets modulate EMT and EndMT could pave the way for innovative therapeutic strategies that harness the body’s innate capacity for repair and regeneration, thereby enhancing clinical outcomes for these conditions.</p></div>\",\"PeriodicalId\":18425,\"journal\":{\"name\":\"Medical hypotheses\",\"volume\":\"189 \",\"pages\":\"Article 111397\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical hypotheses\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306987724001403\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical hypotheses","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306987724001403","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Platelets could be key regulators of epithelial/endothelial-to- mesenchymal transition in atherosclerosis and wound healing
Atherosclerosis and wound healing are complex pathophysiological processes involving multiple cell types, including endothelial cells and platelets. Endothelial-to-mesenchymal transition (EndMT) involves the transformation of endothelial cells into mesenchymal cells. This transition serves as a critical mechanism in vascular remodeling, essential for both atherosclerosis pathogenesis and wound healing. On the other hand, epithelial-to-mesenchymal transition (EMT), which involves the transformation of epithelial cells into mesenchymal cells, is crucial for wound healing. Platelets are known to release various growth factors and cytokines which are integral to wound healing and tissue repair, although their direct role in the modulation of EndMT and EMT remains unclear. However, a few studies have shown a potential mechanistic link between platelet activity and these cellular transitions. Since EndMT and EMT play a critical role in vascular remodeling and tissue repair, respectively, it is plausible that these processes are modulated by platelets, which are known for their dynamic and context-dependent release of growth factors and cytokines. Therefore, we postulate that platelets significantly impact the progression of atherosclerosis through the modulation of EndMT, and that of wound healing through the regulation of both EndMT and EMT. The influence of platelets on these processes can have both beneficial and detrimental effects. This hypothesis represents a significant advance in our understanding of the complex interplay between platelets, cellular phenotype, and disease pathophysiology. Elucidating the specific mechanisms by which platelets modulate EMT and EndMT could pave the way for innovative therapeutic strategies that harness the body’s innate capacity for repair and regeneration, thereby enhancing clinical outcomes for these conditions.
期刊介绍:
Medical Hypotheses is a forum for ideas in medicine and related biomedical sciences. It will publish interesting and important theoretical papers that foster the diversity and debate upon which the scientific process thrives. The Aims and Scope of Medical Hypotheses are no different now from what was proposed by the founder of the journal, the late Dr David Horrobin. In his introduction to the first issue of the Journal, he asks ''what sorts of papers will be published in Medical Hypotheses? and goes on to answer ''Medical Hypotheses will publish papers which describe theories, ideas which have a great deal of observational support and some hypotheses where experimental support is yet fragmentary''. (Horrobin DF, 1975 Ideas in Biomedical Science: Reasons for the foundation of Medical Hypotheses. Medical Hypotheses Volume 1, Issue 1, January-February 1975, Pages 1-2.). Medical Hypotheses was therefore launched, and still exists today, to give novel, radical new ideas and speculations in medicine open-minded consideration, opening the field to radical hypotheses which would be rejected by most conventional journals. Papers in Medical Hypotheses take a standard scientific form in terms of style, structure and referencing. The journal therefore constitutes a bridge between cutting-edge theory and the mainstream of medical and scientific communication, which ideas must eventually enter if they are to be critiqued and tested against observations.