利用原位电导测量法研究铝镁硅合金的均质化并通过机器学习预测挤压晶粒结构

IF 7.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials & Design Pub Date : 2024-06-06 DOI:10.1016/j.matdes.2024.113070
Johannes A. Österreicher , Dragan Živanović , Wolfram Walenta , Stefan Maimone , Manuel Hofbauer , Sindre Hovden , Zuzana Tükör , Aurel Arnoldt , Angelika Cerny , Johannes Kronsteiner , Miloš Antić , Gregor A. Zickler , Florian Ehmeier , Milomir Mikulović , Georg Kunschert
{"title":"利用原位电导测量法研究铝镁硅合金的均质化并通过机器学习预测挤压晶粒结构","authors":"Johannes A. Österreicher ,&nbsp;Dragan Živanović ,&nbsp;Wolfram Walenta ,&nbsp;Stefan Maimone ,&nbsp;Manuel Hofbauer ,&nbsp;Sindre Hovden ,&nbsp;Zuzana Tükör ,&nbsp;Aurel Arnoldt ,&nbsp;Angelika Cerny ,&nbsp;Johannes Kronsteiner ,&nbsp;Miloš Antić ,&nbsp;Gregor A. Zickler ,&nbsp;Florian Ehmeier ,&nbsp;Milomir Mikulović ,&nbsp;Georg Kunschert","doi":"10.1016/j.matdes.2024.113070","DOIUrl":null,"url":null,"abstract":"<div><p>In industrial practice, no sensors capable of obtaining microstructural information <em>in situ</em> during thermo-mechanical processing of Al alloys are commonly employed. Inductive electrical conductivity measurement is safe, inexpensive, and capable of acquiring valuable information about precipitation and dissolution processes. However, commercial eddy current sensors work only at low temperatures near room temperature and are thus not suitable for <em>in situ</em> conductometry during heat treatments of Al alloys. We designed a high-temperature eddy current sensor and performed <em>in situ</em> conductometry during the homogenization of six Al-Mg-Si wrought alloys, three of which are experimental recycling-friendly alloys with increased Fe content. The results are interpreted with regard to microstructural investigations, and the advantages and limitations of our approach are discussed. As a proof-of-concept, we show how the conductivity curves and extrusion process parameters can be combined to predict final extrudate grain structures using machine learning. To achieve this, we employed finite element simulation of extrusion coupled with microstructural simulation over a wide parameter range, validated by extrusion experiments and metallography, and trained a feedforward neural network. We believe our interdisciplinary approach can lead to improvements in the industrial processing of Al wrought alloys.</p></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0264127524004441/pdfft?md5=0e1da86550dadea84ee8922c97bf1290&pid=1-s2.0-S0264127524004441-main.pdf","citationCount":"0","resultStr":"{\"title\":\"In situ conductometry for studying the homogenization of Al-Mg-Si alloys and predicting extrudate grain structure through machine learning\",\"authors\":\"Johannes A. Österreicher ,&nbsp;Dragan Živanović ,&nbsp;Wolfram Walenta ,&nbsp;Stefan Maimone ,&nbsp;Manuel Hofbauer ,&nbsp;Sindre Hovden ,&nbsp;Zuzana Tükör ,&nbsp;Aurel Arnoldt ,&nbsp;Angelika Cerny ,&nbsp;Johannes Kronsteiner ,&nbsp;Miloš Antić ,&nbsp;Gregor A. Zickler ,&nbsp;Florian Ehmeier ,&nbsp;Milomir Mikulović ,&nbsp;Georg Kunschert\",\"doi\":\"10.1016/j.matdes.2024.113070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In industrial practice, no sensors capable of obtaining microstructural information <em>in situ</em> during thermo-mechanical processing of Al alloys are commonly employed. Inductive electrical conductivity measurement is safe, inexpensive, and capable of acquiring valuable information about precipitation and dissolution processes. However, commercial eddy current sensors work only at low temperatures near room temperature and are thus not suitable for <em>in situ</em> conductometry during heat treatments of Al alloys. We designed a high-temperature eddy current sensor and performed <em>in situ</em> conductometry during the homogenization of six Al-Mg-Si wrought alloys, three of which are experimental recycling-friendly alloys with increased Fe content. The results are interpreted with regard to microstructural investigations, and the advantages and limitations of our approach are discussed. As a proof-of-concept, we show how the conductivity curves and extrusion process parameters can be combined to predict final extrudate grain structures using machine learning. To achieve this, we employed finite element simulation of extrusion coupled with microstructural simulation over a wide parameter range, validated by extrusion experiments and metallography, and trained a feedforward neural network. We believe our interdisciplinary approach can lead to improvements in the industrial processing of Al wrought alloys.</p></div>\",\"PeriodicalId\":383,\"journal\":{\"name\":\"Materials & Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0264127524004441/pdfft?md5=0e1da86550dadea84ee8922c97bf1290&pid=1-s2.0-S0264127524004441-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials & Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0264127524004441\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127524004441","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在工业实践中,通常不会使用能够在铝合金热机械加工过程中现场获取微观结构信息的传感器。电感式电导率测量安全、廉价,并且能够获取有关沉淀和溶解过程的宝贵信息。然而,商用涡流传感器只能在接近室温的低温下工作,因此不适合在铝合金热处理过程中进行原位电导测量。我们设计了一种高温涡流传感器,并在六种铝镁硅锻造合金的均质化过程中进行了原位电导测量,其中三种合金是铁含量增加的实验性可回收合金。我们结合微观结构研究对结果进行了解释,并讨论了我们方法的优势和局限性。作为概念验证,我们展示了如何将导电率曲线和挤压工艺参数结合起来,利用机器学习预测最终的挤压晶粒结构。为了实现这一目标,我们采用了挤压有限元模拟,并在广泛的参数范围内进行了微观结构模拟,通过挤压实验和金相学进行了验证,并训练了一个前馈神经网络。我们相信,我们的跨学科方法可以改进铝锻造合金的工业加工。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In situ conductometry for studying the homogenization of Al-Mg-Si alloys and predicting extrudate grain structure through machine learning

In industrial practice, no sensors capable of obtaining microstructural information in situ during thermo-mechanical processing of Al alloys are commonly employed. Inductive electrical conductivity measurement is safe, inexpensive, and capable of acquiring valuable information about precipitation and dissolution processes. However, commercial eddy current sensors work only at low temperatures near room temperature and are thus not suitable for in situ conductometry during heat treatments of Al alloys. We designed a high-temperature eddy current sensor and performed in situ conductometry during the homogenization of six Al-Mg-Si wrought alloys, three of which are experimental recycling-friendly alloys with increased Fe content. The results are interpreted with regard to microstructural investigations, and the advantages and limitations of our approach are discussed. As a proof-of-concept, we show how the conductivity curves and extrusion process parameters can be combined to predict final extrudate grain structures using machine learning. To achieve this, we employed finite element simulation of extrusion coupled with microstructural simulation over a wide parameter range, validated by extrusion experiments and metallography, and trained a feedforward neural network. We believe our interdisciplinary approach can lead to improvements in the industrial processing of Al wrought alloys.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials & Design
Materials & Design Engineering-Mechanical Engineering
CiteScore
14.30
自引率
7.10%
发文量
1028
审稿时长
85 days
期刊介绍: Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry. The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.
期刊最新文献
Multi-directional freeze-casting of interpenetrating phase composites with multi-aligned structure, nearly isotropy, high performance Mechanical characterization of lattice structures fabricated by selective laser melting via an image-based finite cell method with a damage model Gelatin-methacrylate microspheres loaded with tendon-derived stem cells facilitate tendinopathy healing Tensile and fatigue behaviors of newly developed HAYNES® 233 alloy: Additively manufactured vs. wrought Kinetics and mechanisms of high-temperature oxidation in BCC and FCC high-alloy Fe-based alloys with high volume fraction of carbides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1