放射学人工智能模型的无偏公平性评估

Yuxuan Liang, Hanqing Chao, Jiajin Zhang, Ge Wang, Pingkun Yan
{"title":"放射学人工智能模型的无偏公平性评估","authors":"Yuxuan Liang,&nbsp;Hanqing Chao,&nbsp;Jiajin Zhang,&nbsp;Ge Wang,&nbsp;Pingkun Yan","doi":"10.1016/j.metrad.2024.100084","DOIUrl":null,"url":null,"abstract":"<div><p>Fairness of artificial intelligence and machine learning models, often caused by imbalanced datasets, has long been a concern. While many efforts aim to minimize model bias, this study suggests that traditional fairness evaluation methods may be biased, highlighting the need for a proper evaluation scheme with multiple evaluation metrics due to varying results under different criteria. Moreover, the limited data size of minority groups introduces significant data uncertainty, which can undermine the judgement of fairness. This paper introduces an innovative evaluation approach that estimates data uncertainty in minority groups through bootstrapping from majority groups for a more objective statistical assessment. Extensive experiments reveal that traditional evaluation methods might have drawn inaccurate conclusions about model fairness. The proposed method delivers an unbiased fairness assessment by adeptly addressing the inherent complications of model evaluation on imbalanced datasets. The results show that such comprehensive evaluation can provide more confidence when adopting those models.</p></div>","PeriodicalId":100921,"journal":{"name":"Meta-Radiology","volume":"2 3","pages":"Article 100084"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950162824000377/pdfft?md5=77e5eced384962b355da68b120ed5f84&pid=1-s2.0-S2950162824000377-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Unbiasing fairness evaluation of radiology AI model\",\"authors\":\"Yuxuan Liang,&nbsp;Hanqing Chao,&nbsp;Jiajin Zhang,&nbsp;Ge Wang,&nbsp;Pingkun Yan\",\"doi\":\"10.1016/j.metrad.2024.100084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fairness of artificial intelligence and machine learning models, often caused by imbalanced datasets, has long been a concern. While many efforts aim to minimize model bias, this study suggests that traditional fairness evaluation methods may be biased, highlighting the need for a proper evaluation scheme with multiple evaluation metrics due to varying results under different criteria. Moreover, the limited data size of minority groups introduces significant data uncertainty, which can undermine the judgement of fairness. This paper introduces an innovative evaluation approach that estimates data uncertainty in minority groups through bootstrapping from majority groups for a more objective statistical assessment. Extensive experiments reveal that traditional evaluation methods might have drawn inaccurate conclusions about model fairness. The proposed method delivers an unbiased fairness assessment by adeptly addressing the inherent complications of model evaluation on imbalanced datasets. The results show that such comprehensive evaluation can provide more confidence when adopting those models.</p></div>\",\"PeriodicalId\":100921,\"journal\":{\"name\":\"Meta-Radiology\",\"volume\":\"2 3\",\"pages\":\"Article 100084\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2950162824000377/pdfft?md5=77e5eced384962b355da68b120ed5f84&pid=1-s2.0-S2950162824000377-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meta-Radiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950162824000377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meta-Radiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950162824000377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工智能和机器学习模型的公平性往往是由不平衡数据集引起的,长期以来一直备受关注。虽然许多努力都旨在最大限度地减少模型偏差,但本研究表明,传统的公平性评估方法可能存在偏差,由于不同标准下的结果各不相同,因此需要采用具有多个评估指标的适当评估方案。此外,少数群体的数据量有限,会带来很大的数据不确定性,从而影响对公平性的判断。本文介绍了一种创新的评估方法,即通过从多数群体的数据中进行引导来估计少数群体的数据不确定性,从而进行更客观的统计评估。大量实验表明,传统的评估方法可能会对模型公平性得出不准确的结论。所提出的方法巧妙地解决了在不平衡数据集上进行模型评估的内在复杂性,从而提供了无偏见的公平性评估。结果表明,在采用这些模型时,这种综合评估可以提供更多信心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unbiasing fairness evaluation of radiology AI model

Fairness of artificial intelligence and machine learning models, often caused by imbalanced datasets, has long been a concern. While many efforts aim to minimize model bias, this study suggests that traditional fairness evaluation methods may be biased, highlighting the need for a proper evaluation scheme with multiple evaluation metrics due to varying results under different criteria. Moreover, the limited data size of minority groups introduces significant data uncertainty, which can undermine the judgement of fairness. This paper introduces an innovative evaluation approach that estimates data uncertainty in minority groups through bootstrapping from majority groups for a more objective statistical assessment. Extensive experiments reveal that traditional evaluation methods might have drawn inaccurate conclusions about model fairness. The proposed method delivers an unbiased fairness assessment by adeptly addressing the inherent complications of model evaluation on imbalanced datasets. The results show that such comprehensive evaluation can provide more confidence when adopting those models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advancements in the application of deep learning for coronary artery calcification Rethinking the studies of diagnostic biomarkers for mental disorders One scan, multiple insights: A review of AI-Driven biomarker imaging and composite measure detection in lung cancer screening A systematic evaluation of GPT-4V's multimodal capability for chest X-ray image analysis Integrating AI in college education: Positive yet mixed experiences with ChatGPT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1