{"title":"基于平行局部斜坡扫描的 VSP 波场分离方法","authors":"Wu Li, Yuyong Yang, Bocheng Tao, Zhengyang Wang, Huailai Zhou, Yuanjun Wang","doi":"10.1016/j.cageo.2024.105643","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the detectors being distributed in the target medium, vertical seismic profile (VSP) is a seismic observation method that has the advantages of high resolution and a high signal-to-noise ratio. Separating the mixed wavefields into upgoing and downgoing waves can obtain more obvious dynamic and kinematic characteristics of seismic waves, guiding subsequent imaging and interpretation. The traditional method is mainly based on the pickup of first breaks. Flattening the global seismic data by first breaks can enhance the seismic events through techniques like median filter and singular value decomposition (SVD). However, this method relies on high-precision pickup of first breaks and is limited by zero offset. To address this limitation, we introduce an improved median filtering separation method. This method employs separations of the local dip angles into positive and negative through multi-window scanning (MWS). Due to the high accuracy and robustness of this method in 2-D VSP data, we propose to use the local dip angle of the wavefields to median filter the wavefield through positive and negative angles to obtain upgoing and downgoing waves. This method for wavefield separation is optimized by iteratively identifying the directions of the seismic data. However, this optimization comes at the cost of increased computational requirements, especially under high-precision conditions. To help alleviate this problem, we use multi-thread parallel computing technique on a multi-core central processing unit (CPU) to improve computational efficiency. Finally, we validate the proposed method by testing it on synthetic seismic data and field VSP data, respectively. The results show that this wavefield separation method has advantages in terms of accuracy and robustness compared to the median filtering method based on the first break picking.</p></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"191 ","pages":"Article 105643"},"PeriodicalIF":4.2000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VSP wavefields separating method based on parallel local slope scanning\",\"authors\":\"Wu Li, Yuyong Yang, Bocheng Tao, Zhengyang Wang, Huailai Zhou, Yuanjun Wang\",\"doi\":\"10.1016/j.cageo.2024.105643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Due to the detectors being distributed in the target medium, vertical seismic profile (VSP) is a seismic observation method that has the advantages of high resolution and a high signal-to-noise ratio. Separating the mixed wavefields into upgoing and downgoing waves can obtain more obvious dynamic and kinematic characteristics of seismic waves, guiding subsequent imaging and interpretation. The traditional method is mainly based on the pickup of first breaks. Flattening the global seismic data by first breaks can enhance the seismic events through techniques like median filter and singular value decomposition (SVD). However, this method relies on high-precision pickup of first breaks and is limited by zero offset. To address this limitation, we introduce an improved median filtering separation method. This method employs separations of the local dip angles into positive and negative through multi-window scanning (MWS). Due to the high accuracy and robustness of this method in 2-D VSP data, we propose to use the local dip angle of the wavefields to median filter the wavefield through positive and negative angles to obtain upgoing and downgoing waves. This method for wavefield separation is optimized by iteratively identifying the directions of the seismic data. However, this optimization comes at the cost of increased computational requirements, especially under high-precision conditions. To help alleviate this problem, we use multi-thread parallel computing technique on a multi-core central processing unit (CPU) to improve computational efficiency. Finally, we validate the proposed method by testing it on synthetic seismic data and field VSP data, respectively. The results show that this wavefield separation method has advantages in terms of accuracy and robustness compared to the median filtering method based on the first break picking.</p></div>\",\"PeriodicalId\":55221,\"journal\":{\"name\":\"Computers & Geosciences\",\"volume\":\"191 \",\"pages\":\"Article 105643\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Geosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098300424001262\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424001262","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
VSP wavefields separating method based on parallel local slope scanning
Due to the detectors being distributed in the target medium, vertical seismic profile (VSP) is a seismic observation method that has the advantages of high resolution and a high signal-to-noise ratio. Separating the mixed wavefields into upgoing and downgoing waves can obtain more obvious dynamic and kinematic characteristics of seismic waves, guiding subsequent imaging and interpretation. The traditional method is mainly based on the pickup of first breaks. Flattening the global seismic data by first breaks can enhance the seismic events through techniques like median filter and singular value decomposition (SVD). However, this method relies on high-precision pickup of first breaks and is limited by zero offset. To address this limitation, we introduce an improved median filtering separation method. This method employs separations of the local dip angles into positive and negative through multi-window scanning (MWS). Due to the high accuracy and robustness of this method in 2-D VSP data, we propose to use the local dip angle of the wavefields to median filter the wavefield through positive and negative angles to obtain upgoing and downgoing waves. This method for wavefield separation is optimized by iteratively identifying the directions of the seismic data. However, this optimization comes at the cost of increased computational requirements, especially under high-precision conditions. To help alleviate this problem, we use multi-thread parallel computing technique on a multi-core central processing unit (CPU) to improve computational efficiency. Finally, we validate the proposed method by testing it on synthetic seismic data and field VSP data, respectively. The results show that this wavefield separation method has advantages in terms of accuracy and robustness compared to the median filtering method based on the first break picking.
期刊介绍:
Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.