利用蛋白酶介导的降解限制分泌细胞在细胞间信号传递过程中的广播范围

IF 3.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS ACS Synthetic Biology Pub Date : 2024-06-17 DOI:10.1021/acssynbio.4c00042
Joshua Cole,  and , Rebecca Schulman*, 
{"title":"利用蛋白酶介导的降解限制分泌细胞在细胞间信号传递过程中的广播范围","authors":"Joshua Cole,&nbsp; and ,&nbsp;Rebecca Schulman*,&nbsp;","doi":"10.1021/acssynbio.4c00042","DOIUrl":null,"url":null,"abstract":"<p >Synthetic biology is revolutionizing our approaches to biocomputing, diagnostics, and environmental monitoring through the use of designed genetic circuits that perform a function within a single cell. More complex functions can be performed by multiple cells that coordinate as they perform different subtasks. Cell–cell communication using molecular signals is particularly suited for aiding in this communication, but the number of molecules that can be used in different communication channels is limited. Here we investigate how proteases can limit the broadcast range of communicating cells. We find that adding barrierpepsin to <i>Saccharomyces cerevisiae</i> cells in two-dimensional multicellular networks that use α-factor signaling prevents cells beyond a specific radius from responding to α-factor signals. Such limiting of the broadcast range of cells could allow multiple cells to use the same signaling molecules to direct different communication processes and functions, provided that they are far enough from one another. These results suggest a means by which complex synthetic cellular networks using only a few signals for communication could be created by structuring a community of cells to create distinct broadcast environments.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limiting the Broadcast Range of a Secreting Cell during Intercellular Signaling Using Protease-Mediated Degradation\",\"authors\":\"Joshua Cole,&nbsp; and ,&nbsp;Rebecca Schulman*,&nbsp;\",\"doi\":\"10.1021/acssynbio.4c00042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Synthetic biology is revolutionizing our approaches to biocomputing, diagnostics, and environmental monitoring through the use of designed genetic circuits that perform a function within a single cell. More complex functions can be performed by multiple cells that coordinate as they perform different subtasks. Cell–cell communication using molecular signals is particularly suited for aiding in this communication, but the number of molecules that can be used in different communication channels is limited. Here we investigate how proteases can limit the broadcast range of communicating cells. We find that adding barrierpepsin to <i>Saccharomyces cerevisiae</i> cells in two-dimensional multicellular networks that use α-factor signaling prevents cells beyond a specific radius from responding to α-factor signals. Such limiting of the broadcast range of cells could allow multiple cells to use the same signaling molecules to direct different communication processes and functions, provided that they are far enough from one another. These results suggest a means by which complex synthetic cellular networks using only a few signals for communication could be created by structuring a community of cells to create distinct broadcast environments.</p>\",\"PeriodicalId\":26,\"journal\":{\"name\":\"ACS Synthetic Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Synthetic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssynbio.4c00042\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssynbio.4c00042","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

合成生物学正在彻底改变我们的生物计算、诊断和环境监测方法,其方法是利用设计好的基因电路在单个细胞内实现某种功能。更复杂的功能可由多个细胞执行,它们在执行不同的子任务时相互协调。利用分子信号进行的细胞间通信尤其适用于辅助这种通信,但可用于不同通信渠道的分子数量有限。在这里,我们研究了蛋白酶如何限制通信细胞的广播范围。我们发现,在使用α-因子信号的二维多细胞网络中,向酿酒酵母细胞中添加屏障胃蛋白酶,可阻止特定半径以外的细胞对α-因子信号做出反应。这种对细胞广播范围的限制可以让多个细胞使用相同的信号分子来引导不同的通信过程和功能,前提是它们之间的距离足够远。这些结果表明,通过构建细胞群落以创造不同的广播环境,可以创建只使用少量信号进行通信的复杂合成细胞网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Limiting the Broadcast Range of a Secreting Cell during Intercellular Signaling Using Protease-Mediated Degradation

Synthetic biology is revolutionizing our approaches to biocomputing, diagnostics, and environmental monitoring through the use of designed genetic circuits that perform a function within a single cell. More complex functions can be performed by multiple cells that coordinate as they perform different subtasks. Cell–cell communication using molecular signals is particularly suited for aiding in this communication, but the number of molecules that can be used in different communication channels is limited. Here we investigate how proteases can limit the broadcast range of communicating cells. We find that adding barrierpepsin to Saccharomyces cerevisiae cells in two-dimensional multicellular networks that use α-factor signaling prevents cells beyond a specific radius from responding to α-factor signals. Such limiting of the broadcast range of cells could allow multiple cells to use the same signaling molecules to direct different communication processes and functions, provided that they are far enough from one another. These results suggest a means by which complex synthetic cellular networks using only a few signals for communication could be created by structuring a community of cells to create distinct broadcast environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
10.60%
发文量
380
审稿时长
6-12 weeks
期刊介绍: The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism. Topics may include, but are not limited to: Design and optimization of genetic systems Genetic circuit design and their principles for their organization into programs Computational methods to aid the design of genetic systems Experimental methods to quantify genetic parts, circuits, and metabolic fluxes Genetic parts libraries: their creation, analysis, and ontological representation Protein engineering including computational design Metabolic engineering and cellular manufacturing, including biomass conversion Natural product access, engineering, and production Creative and innovative applications of cellular programming Medical applications, tissue engineering, and the programming of therapeutic cells Minimal cell design and construction Genomics and genome replacement strategies Viral engineering Automated and robotic assembly platforms for synthetic biology DNA synthesis methodologies Metagenomics and synthetic metagenomic analysis Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction Gene optimization Methods for genome-scale measurements of transcription and metabolomics Systems biology and methods to integrate multiple data sources in vitro and cell-free synthetic biology and molecular programming Nucleic acid engineering.
期刊最新文献
Efficient Strategy for Synthesizing Vector-Free and Oncolytic Herpes Simplex Type 1 Viruses. One-Pot Assay for Rapid Detection of Stenotrophomonas maltophilia by RPA-CRISPR/Cas12a. Correction to "Cell-Free Gene Expression Dynamics in Synthetic Cell Populations". The Potential of Artificial Cells Functioning under In Situ Deep-Sea Conditions. Disentangling the Regulatory Response of Agrobacterium tumefaciens CHLDO to Glyphosate for Engineering Whole-Cell Phosphonate Biosensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1