水分子模型的分层多标准优化。

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL Journal of Chemical Information and Modeling Pub Date : 2024-06-18 DOI:10.1021/acs.jcim.4c00404
Aditya Kulkarni, Michael Bortz, Karl-Heinz Küfer, Maximilian Kohns* and Hans Hasse, 
{"title":"水分子模型的分层多标准优化。","authors":"Aditya Kulkarni,&nbsp;Michael Bortz,&nbsp;Karl-Heinz Küfer,&nbsp;Maximilian Kohns* and Hans Hasse,&nbsp;","doi":"10.1021/acs.jcim.4c00404","DOIUrl":null,"url":null,"abstract":"<p >Many widely used molecular models of water are built from a single Lennard-Jones site on which three point charges are positioned, one negative and two positive ones. Models from that class, denoted LJ3PC here, are computationally efficient, but it is well known that they cannot represent all relevant properties of water simultaneously with good accuracy. Despite the importance of the LJ3PC water model class, its inherent limitations in simultaneously describing different properties of water have never been studied systematically. This task can only be solved by multicriteria optimization (MCO). However, due to its computational cost, applying MCO to molecular models is a formidable task. We have recently introduced the reduced units method (RUM) to cope with this problem. In the present work, we apply the RUM in a hierarchical scheme to optimize LJ3PC water models taking into account five objectives: the representation of vapor pressure, saturated liquid density, self-diffusion coefficient, shear viscosity, and relative permittivity. Of the six parameters of the LJ3PC models, five were varied; only the H–O–H bond angle, which is usually chosen based on physical arguments, was kept constant. Our hierarchical RUM-based approach yields a Pareto set that contains attractive new water models. Furthermore, the results give an idea of what can be achieved by molecular modeling of water with models from the LJ3PC class.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical Multicriteria Optimization of Molecular Models of Water\",\"authors\":\"Aditya Kulkarni,&nbsp;Michael Bortz,&nbsp;Karl-Heinz Küfer,&nbsp;Maximilian Kohns* and Hans Hasse,&nbsp;\",\"doi\":\"10.1021/acs.jcim.4c00404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Many widely used molecular models of water are built from a single Lennard-Jones site on which three point charges are positioned, one negative and two positive ones. Models from that class, denoted LJ3PC here, are computationally efficient, but it is well known that they cannot represent all relevant properties of water simultaneously with good accuracy. Despite the importance of the LJ3PC water model class, its inherent limitations in simultaneously describing different properties of water have never been studied systematically. This task can only be solved by multicriteria optimization (MCO). However, due to its computational cost, applying MCO to molecular models is a formidable task. We have recently introduced the reduced units method (RUM) to cope with this problem. In the present work, we apply the RUM in a hierarchical scheme to optimize LJ3PC water models taking into account five objectives: the representation of vapor pressure, saturated liquid density, self-diffusion coefficient, shear viscosity, and relative permittivity. Of the six parameters of the LJ3PC models, five were varied; only the H–O–H bond angle, which is usually chosen based on physical arguments, was kept constant. Our hierarchical RUM-based approach yields a Pareto set that contains attractive new water models. Furthermore, the results give an idea of what can be achieved by molecular modeling of water with models from the LJ3PC class.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jcim.4c00404\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.4c00404","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

许多广泛使用的水分子模型都是由单个伦纳德-琼斯位点建立的,该位点上有三个点电荷,一个负电荷和两个正电荷。该类模型(此处称为 LJ3PC)计算效率高,但众所周知,它们无法同时准确地表示水的所有相关特性。尽管 LJ3PC 水模型类别非常重要,但从未对其在同时描述水的不同特性方面的固有局限性进行过系统研究。这项任务只能通过多标准优化(MCO)来解决。然而,由于其计算成本,将 MCO 应用于分子模型是一项艰巨的任务。我们最近引入了简化单元法(RUM)来解决这一问题。在本研究中,我们采用分层方案应用 RUM 优化 LJ3PC 水模型,同时考虑到五个目标:蒸汽压、饱和液体密度、自扩散系数、剪切粘度和相对介电常数的表示。在 LJ3PC 模型的六个参数中,有五个参数是可变的;只有 H-O-H 键角保持不变,该角通常是根据物理论据选择的。我们基于 RUM 的分层方法产生了一个帕累托集合,其中包含了极具吸引力的新水模型。此外,研究结果还展示了利用 LJ3PC 类模型建立水分子模型所能取得的成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hierarchical Multicriteria Optimization of Molecular Models of Water

Many widely used molecular models of water are built from a single Lennard-Jones site on which three point charges are positioned, one negative and two positive ones. Models from that class, denoted LJ3PC here, are computationally efficient, but it is well known that they cannot represent all relevant properties of water simultaneously with good accuracy. Despite the importance of the LJ3PC water model class, its inherent limitations in simultaneously describing different properties of water have never been studied systematically. This task can only be solved by multicriteria optimization (MCO). However, due to its computational cost, applying MCO to molecular models is a formidable task. We have recently introduced the reduced units method (RUM) to cope with this problem. In the present work, we apply the RUM in a hierarchical scheme to optimize LJ3PC water models taking into account five objectives: the representation of vapor pressure, saturated liquid density, self-diffusion coefficient, shear viscosity, and relative permittivity. Of the six parameters of the LJ3PC models, five were varied; only the H–O–H bond angle, which is usually chosen based on physical arguments, was kept constant. Our hierarchical RUM-based approach yields a Pareto set that contains attractive new water models. Furthermore, the results give an idea of what can be achieved by molecular modeling of water with models from the LJ3PC class.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
期刊最新文献
Riboflavin-Induced DNA Damage and Anticancer Activity in Breast Cancer Cells under Visible Light: A TD-DFT and In Vitro Study. DeltaGzip: Computing Biopolymer-Ligand Binding Affinity via Kolmogorov Complexity and Lossless Compression. Enhancing Chemical Reaction Monitoring with a Deep Learning Model for NMR Spectra Image Matching to Target Compounds. CageCavityCalc (C3): A Computational Tool for Calculating and Visualizing Cavities in Molecular Cages AttenGpKa: A Universal Predictor of Solvation Acidity Using Graph Neural Network and Molecular Topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1