用于莪术类化合物结合的分子印迹聚合物的合理设计:选择功能性单体的计算和实验方法。

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL Journal of Chemical Information and Modeling Pub Date : 2024-06-18 DOI:10.1021/acs.jcim.4c00775
Ana M. Muñoz, Víctor H. Orozco, Lina M. Hoyos, Luis F. Giraldo and Cesar A. Pérez*, 
{"title":"用于莪术类化合物结合的分子印迹聚合物的合理设计:选择功能性单体的计算和实验方法。","authors":"Ana M. Muñoz,&nbsp;Víctor H. Orozco,&nbsp;Lina M. Hoyos,&nbsp;Luis F. Giraldo and Cesar A. Pérez*,&nbsp;","doi":"10.1021/acs.jcim.4c00775","DOIUrl":null,"url":null,"abstract":"<p >Molecularly imprinted polymers (MIPs) have emerged as bespoke materials with versatile molecular applications. In this study, we propose a proof of concept for a methodology employing molecular dynamics (MD) simulations to guide the selection of functional monomers for curcuminoid binding in MIPs. Curcumin, demethoxycurcumin, and bisdemethoxycurcumin are phenolic compounds widely employed as spices, pigments, additives, and therapeutic agents, representing the three main curcuminoids of interest. Through MD simulations, we investigated prepolymerization mixtures composed of various functional monomers, including acrylamide (ACA), acrylic acid (AA), methacrylic acid (MAA), and <i>N</i>-vinylpyrrolidone (NVP), with ethylene glycol dimethacrylate (EGDMA) as the cross-linker and acetonitrile as the solvent. Curcumin was selected as the template molecule due to its structural similarity to the other curcuminoids. Notably, the prepolymerization mixture containing NVP as the functional monomer demonstrated superior molecular recognition capabilities toward curcumin. This observation was supported by higher functional monomer molecules surrounding the template, a lower total nonbonded energy between the template and monomer, and a greater number of hydrogen bonds in the aggregate. These findings suggest a stronger affinity between the functional monomer NVP and the template. We synthesized, characterized, and conducted binding tests on the MIPs to validate the MD simulation results. The experimental binding tests confirmed that the MIP-NVP exhibited higher binding capacity. Consequently, based on MD simulations, our computational methodology effectively guided the selection of the functional monomer, leading to MIPs with binding capacity for curcuminoids. The outcomes of this study provide a valuable reference for the rational design of MIPs through MD simulations, facilitating the selection of components for MIPs. This computational approach holds the potential for extension to other templates, establishing a robust methodology for the rational design of MIPs.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational Design of Molecularly Imprinted Polymers for Curcuminoids Binding: Computational and Experimental Approaches for the Selection of Functional Monomers\",\"authors\":\"Ana M. Muñoz,&nbsp;Víctor H. Orozco,&nbsp;Lina M. Hoyos,&nbsp;Luis F. Giraldo and Cesar A. Pérez*,&nbsp;\",\"doi\":\"10.1021/acs.jcim.4c00775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Molecularly imprinted polymers (MIPs) have emerged as bespoke materials with versatile molecular applications. In this study, we propose a proof of concept for a methodology employing molecular dynamics (MD) simulations to guide the selection of functional monomers for curcuminoid binding in MIPs. Curcumin, demethoxycurcumin, and bisdemethoxycurcumin are phenolic compounds widely employed as spices, pigments, additives, and therapeutic agents, representing the three main curcuminoids of interest. Through MD simulations, we investigated prepolymerization mixtures composed of various functional monomers, including acrylamide (ACA), acrylic acid (AA), methacrylic acid (MAA), and <i>N</i>-vinylpyrrolidone (NVP), with ethylene glycol dimethacrylate (EGDMA) as the cross-linker and acetonitrile as the solvent. Curcumin was selected as the template molecule due to its structural similarity to the other curcuminoids. Notably, the prepolymerization mixture containing NVP as the functional monomer demonstrated superior molecular recognition capabilities toward curcumin. This observation was supported by higher functional monomer molecules surrounding the template, a lower total nonbonded energy between the template and monomer, and a greater number of hydrogen bonds in the aggregate. These findings suggest a stronger affinity between the functional monomer NVP and the template. We synthesized, characterized, and conducted binding tests on the MIPs to validate the MD simulation results. The experimental binding tests confirmed that the MIP-NVP exhibited higher binding capacity. Consequently, based on MD simulations, our computational methodology effectively guided the selection of the functional monomer, leading to MIPs with binding capacity for curcuminoids. The outcomes of this study provide a valuable reference for the rational design of MIPs through MD simulations, facilitating the selection of components for MIPs. This computational approach holds the potential for extension to other templates, establishing a robust methodology for the rational design of MIPs.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jcim.4c00775\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.4c00775","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

分子印迹聚合物(MIPs)已成为具有多功能分子应用的定制材料。在本研究中,我们提出了一种概念验证方法,即利用分子动力学(MD)模拟来指导选择姜黄素与 MIPs 结合的功能单体。姜黄素、去甲氧基姜黄素和双去甲氧基姜黄素是广泛用作香料、颜料、添加剂和治疗剂的酚类化合物,代表了三种主要的姜黄类化合物。通过 MD 模拟,我们研究了由丙烯酰胺(ACA)、丙烯酸(AA)、甲基丙烯酸(MAA)和 N-乙烯基吡咯烷酮(NVP)等各种功能单体组成的预聚合混合物,并以乙二醇二甲基丙烯酸酯(EGDMA)作为交联剂,乙腈作为溶剂。由于姜黄素与其他姜黄类化合物结构相似,因此被选为模板分子。值得注意的是,含有 NVP 作为功能单体的预聚合混合物对姜黄素的分子识别能力更强。模板周围的功能性单体分子较多、模板和单体之间的总非键能较低以及聚合体中的氢键数量较多,都支持这一观察结果。这些发现表明,功能性单体 NVP 与模板之间的亲和力更强。我们对 MIP 进行了合成、表征和结合测试,以验证 MD 模拟结果。实验结合测试证实,MIP-NVP 具有更高的结合能力。因此,基于 MD 模拟,我们的计算方法有效地指导了功能单体的选择,从而产生了具有姜黄素结合能力的 MIPs。这项研究的成果为通过 MD 模拟合理设计 MIPs 提供了宝贵的参考,有助于 MIPs 成分的选择。这种计算方法有可能扩展到其他模板,为 MIPs 的合理设计建立一种稳健的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rational Design of Molecularly Imprinted Polymers for Curcuminoids Binding: Computational and Experimental Approaches for the Selection of Functional Monomers

Molecularly imprinted polymers (MIPs) have emerged as bespoke materials with versatile molecular applications. In this study, we propose a proof of concept for a methodology employing molecular dynamics (MD) simulations to guide the selection of functional monomers for curcuminoid binding in MIPs. Curcumin, demethoxycurcumin, and bisdemethoxycurcumin are phenolic compounds widely employed as spices, pigments, additives, and therapeutic agents, representing the three main curcuminoids of interest. Through MD simulations, we investigated prepolymerization mixtures composed of various functional monomers, including acrylamide (ACA), acrylic acid (AA), methacrylic acid (MAA), and N-vinylpyrrolidone (NVP), with ethylene glycol dimethacrylate (EGDMA) as the cross-linker and acetonitrile as the solvent. Curcumin was selected as the template molecule due to its structural similarity to the other curcuminoids. Notably, the prepolymerization mixture containing NVP as the functional monomer demonstrated superior molecular recognition capabilities toward curcumin. This observation was supported by higher functional monomer molecules surrounding the template, a lower total nonbonded energy between the template and monomer, and a greater number of hydrogen bonds in the aggregate. These findings suggest a stronger affinity between the functional monomer NVP and the template. We synthesized, characterized, and conducted binding tests on the MIPs to validate the MD simulation results. The experimental binding tests confirmed that the MIP-NVP exhibited higher binding capacity. Consequently, based on MD simulations, our computational methodology effectively guided the selection of the functional monomer, leading to MIPs with binding capacity for curcuminoids. The outcomes of this study provide a valuable reference for the rational design of MIPs through MD simulations, facilitating the selection of components for MIPs. This computational approach holds the potential for extension to other templates, establishing a robust methodology for the rational design of MIPs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
期刊最新文献
Riboflavin-Induced DNA Damage and Anticancer Activity in Breast Cancer Cells under Visible Light: A TD-DFT and In Vitro Study. DeltaGzip: Computing Biopolymer-Ligand Binding Affinity via Kolmogorov Complexity and Lossless Compression. Enhancing Chemical Reaction Monitoring with a Deep Learning Model for NMR Spectra Image Matching to Target Compounds. CageCavityCalc (C3): A Computational Tool for Calculating and Visualizing Cavities in Molecular Cages AttenGpKa: A Universal Predictor of Solvation Acidity Using Graph Neural Network and Molecular Topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1