Lillian McAfee, Zach Heath, William Anderson, Marvin Hozi, John Walker Orr, Youngbok Abraham Kang
{"title":"开发自动显微镜图像跟踪和分析系统。","authors":"Lillian McAfee, Zach Heath, William Anderson, Marvin Hozi, John Walker Orr, Youngbok Abraham Kang","doi":"10.1002/btpr.3490","DOIUrl":null,"url":null,"abstract":"<p><p>Microscopy image analysis plays a crucial role in understanding cellular behavior and uncovering important insights in various biological and medical research domains. Tracking cells within the time-lapse microscopy images is a fundamental technique that enables the study of cell dynamics, interactions, and migration. While manual cell tracking is possible, it is time-consuming and prone to subjective biases that impact results. In order to solve this issue, we sought to create an automated software solution, named cell analyzer, which is able to track cells within microscopy images with minimal input required from the user. The program of cell analyzer was written in Python utilizing the open source computer vision (OpenCV) library and featured a graphical user interface that makes it easy for users to access. The functions of all codes were verified through closeness, area, centroid, contrast, variance, and cell tracking test. Cell analyzer primarily utilizes image preprocessing and edge detection techniques to isolate cell boundaries for detection and analysis. It uniquely recorded the area, displacement, speed, size, and direction of detected cell objects and visualized the data collected automatically for fast analysis. Our cell analyzer provides an easy-to-use tool through a graphical user interface for tracking cell motion and analyzing quantitative cell images.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e3490"},"PeriodicalIF":2.5000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The development of an automated microscope image tracking and analysis system.\",\"authors\":\"Lillian McAfee, Zach Heath, William Anderson, Marvin Hozi, John Walker Orr, Youngbok Abraham Kang\",\"doi\":\"10.1002/btpr.3490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microscopy image analysis plays a crucial role in understanding cellular behavior and uncovering important insights in various biological and medical research domains. Tracking cells within the time-lapse microscopy images is a fundamental technique that enables the study of cell dynamics, interactions, and migration. While manual cell tracking is possible, it is time-consuming and prone to subjective biases that impact results. In order to solve this issue, we sought to create an automated software solution, named cell analyzer, which is able to track cells within microscopy images with minimal input required from the user. The program of cell analyzer was written in Python utilizing the open source computer vision (OpenCV) library and featured a graphical user interface that makes it easy for users to access. The functions of all codes were verified through closeness, area, centroid, contrast, variance, and cell tracking test. Cell analyzer primarily utilizes image preprocessing and edge detection techniques to isolate cell boundaries for detection and analysis. It uniquely recorded the area, displacement, speed, size, and direction of detected cell objects and visualized the data collected automatically for fast analysis. Our cell analyzer provides an easy-to-use tool through a graphical user interface for tracking cell motion and analyzing quantitative cell images.</p>\",\"PeriodicalId\":8856,\"journal\":{\"name\":\"Biotechnology Progress\",\"volume\":\" \",\"pages\":\"e3490\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Progress\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/btpr.3490\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btpr.3490","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
The development of an automated microscope image tracking and analysis system.
Microscopy image analysis plays a crucial role in understanding cellular behavior and uncovering important insights in various biological and medical research domains. Tracking cells within the time-lapse microscopy images is a fundamental technique that enables the study of cell dynamics, interactions, and migration. While manual cell tracking is possible, it is time-consuming and prone to subjective biases that impact results. In order to solve this issue, we sought to create an automated software solution, named cell analyzer, which is able to track cells within microscopy images with minimal input required from the user. The program of cell analyzer was written in Python utilizing the open source computer vision (OpenCV) library and featured a graphical user interface that makes it easy for users to access. The functions of all codes were verified through closeness, area, centroid, contrast, variance, and cell tracking test. Cell analyzer primarily utilizes image preprocessing and edge detection techniques to isolate cell boundaries for detection and analysis. It uniquely recorded the area, displacement, speed, size, and direction of detected cell objects and visualized the data collected automatically for fast analysis. Our cell analyzer provides an easy-to-use tool through a graphical user interface for tracking cell motion and analyzing quantitative cell images.
期刊介绍:
Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries.
Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.