{"title":"AKR1C4 通过调节铁突变调节结直肠癌细胞对化疗的敏感性","authors":"Li Wang, Cuiling Lv, Xiaoxia Liu","doi":"10.1007/s00280-024-04685-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Colorectal cancer (CRC) remains a major global health concern, necessitating innovative therapeutic strategies to enhance treatment efficacy. In this study, we investigated the role of AKR1C4 in CRC and its impact on chemotherapy response.</p><p><strong>Methods: </strong>AKR1C4 stable knockout CRC cell lines were generated using CRISPR/Cas9 technology. The impact of AKR1C4 depletion on chemotherapy sensitivity was assessed using Sulforhodamine B assay. Long-term, low-dose drug induction with increasing concentrations of 5FU, irinotecan, and oxaliplatin were employed to establish acquired chemoresistant CRC cell lines. Ferroptosis induction and inhibition were examined through total iron content and lipid peroxidation measurements.</p><p><strong>Results: </strong>We found that AKR1C4 knockout enhances CRC cell sensitivity to chemotherapy, specifically by inducing ferroptosis. The enzymatic activity of AKR1C4 is crucial for regulating chemotherapy sensitivity in CRC cells, as evidenced by the inability of a Y55A mutant to reverse the sensitizing effect. Additionally, AKR1C4 inhibitors enhance chemotherapy sensitivity by inducing ferroptosis. Notably, AKR1C4 depletion resensitizes the acquired chemoresistant CRC cells to chemotherapy, suggesting its potential as a therapeutic target for overcoming acquired chemoresistance. Clinical analysis reveals that high AKR1C4 expression is associated with poor prognosis in CRC patients undergoing chemotherapy, highlighting its significance as a prognostic marker and a potential target for therapeutic intervention.</p><p><strong>Conclusion: </strong>This study illuminates the multifaceted role of AKR1C4 in CRC, demonstrating its significance in regulating chemotherapy sensitivity, overcoming acquired resistance, and impacting clinical outcomes. The insights provided may pave the way for novel therapeutic strategies in CRC management.</p>","PeriodicalId":9556,"journal":{"name":"Cancer Chemotherapy and Pharmacology","volume":" ","pages":"373-385"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AKR1C4 regulates the sensitivity of colorectal cancer cells to chemotherapy through ferroptosis modulation.\",\"authors\":\"Li Wang, Cuiling Lv, Xiaoxia Liu\",\"doi\":\"10.1007/s00280-024-04685-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Colorectal cancer (CRC) remains a major global health concern, necessitating innovative therapeutic strategies to enhance treatment efficacy. In this study, we investigated the role of AKR1C4 in CRC and its impact on chemotherapy response.</p><p><strong>Methods: </strong>AKR1C4 stable knockout CRC cell lines were generated using CRISPR/Cas9 technology. The impact of AKR1C4 depletion on chemotherapy sensitivity was assessed using Sulforhodamine B assay. Long-term, low-dose drug induction with increasing concentrations of 5FU, irinotecan, and oxaliplatin were employed to establish acquired chemoresistant CRC cell lines. Ferroptosis induction and inhibition were examined through total iron content and lipid peroxidation measurements.</p><p><strong>Results: </strong>We found that AKR1C4 knockout enhances CRC cell sensitivity to chemotherapy, specifically by inducing ferroptosis. The enzymatic activity of AKR1C4 is crucial for regulating chemotherapy sensitivity in CRC cells, as evidenced by the inability of a Y55A mutant to reverse the sensitizing effect. Additionally, AKR1C4 inhibitors enhance chemotherapy sensitivity by inducing ferroptosis. Notably, AKR1C4 depletion resensitizes the acquired chemoresistant CRC cells to chemotherapy, suggesting its potential as a therapeutic target for overcoming acquired chemoresistance. Clinical analysis reveals that high AKR1C4 expression is associated with poor prognosis in CRC patients undergoing chemotherapy, highlighting its significance as a prognostic marker and a potential target for therapeutic intervention.</p><p><strong>Conclusion: </strong>This study illuminates the multifaceted role of AKR1C4 in CRC, demonstrating its significance in regulating chemotherapy sensitivity, overcoming acquired resistance, and impacting clinical outcomes. The insights provided may pave the way for novel therapeutic strategies in CRC management.</p>\",\"PeriodicalId\":9556,\"journal\":{\"name\":\"Cancer Chemotherapy and Pharmacology\",\"volume\":\" \",\"pages\":\"373-385\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Chemotherapy and Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00280-024-04685-1\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Chemotherapy and Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00280-024-04685-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
AKR1C4 regulates the sensitivity of colorectal cancer cells to chemotherapy through ferroptosis modulation.
Purpose: Colorectal cancer (CRC) remains a major global health concern, necessitating innovative therapeutic strategies to enhance treatment efficacy. In this study, we investigated the role of AKR1C4 in CRC and its impact on chemotherapy response.
Methods: AKR1C4 stable knockout CRC cell lines were generated using CRISPR/Cas9 technology. The impact of AKR1C4 depletion on chemotherapy sensitivity was assessed using Sulforhodamine B assay. Long-term, low-dose drug induction with increasing concentrations of 5FU, irinotecan, and oxaliplatin were employed to establish acquired chemoresistant CRC cell lines. Ferroptosis induction and inhibition were examined through total iron content and lipid peroxidation measurements.
Results: We found that AKR1C4 knockout enhances CRC cell sensitivity to chemotherapy, specifically by inducing ferroptosis. The enzymatic activity of AKR1C4 is crucial for regulating chemotherapy sensitivity in CRC cells, as evidenced by the inability of a Y55A mutant to reverse the sensitizing effect. Additionally, AKR1C4 inhibitors enhance chemotherapy sensitivity by inducing ferroptosis. Notably, AKR1C4 depletion resensitizes the acquired chemoresistant CRC cells to chemotherapy, suggesting its potential as a therapeutic target for overcoming acquired chemoresistance. Clinical analysis reveals that high AKR1C4 expression is associated with poor prognosis in CRC patients undergoing chemotherapy, highlighting its significance as a prognostic marker and a potential target for therapeutic intervention.
Conclusion: This study illuminates the multifaceted role of AKR1C4 in CRC, demonstrating its significance in regulating chemotherapy sensitivity, overcoming acquired resistance, and impacting clinical outcomes. The insights provided may pave the way for novel therapeutic strategies in CRC management.
期刊介绍:
Addressing a wide range of pharmacologic and oncologic concerns on both experimental and clinical levels, Cancer Chemotherapy and Pharmacology is an eminent journal in the field. The primary focus in this rapid publication medium is on new anticancer agents, their experimental screening, preclinical toxicology and pharmacology, single and combined drug administration modalities, and clinical phase I, II and III trials. It is essential reading for pharmacologists and oncologists giving results recorded in the following areas: clinical toxicology, pharmacokinetics, pharmacodynamics, drug interactions, and indications for chemotherapy in cancer treatment strategy.