{"title":"美利汀通过上调LATS2使YAP/HIF-1α通路失活,从而抑制缺氧诱导的NSCLC增殖、糖酵解和血管生成。","authors":"Hao Li","doi":"10.1016/j.clinsp.2024.100407","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>NSCLC is one of the most common causes of death. The hypoxia microenvironment contributes to cancer progression. The purpose was to explore the effects and mechanism of melittin on NSCLC cells in the hypoxic microenvironment.</p></div><div><h3>Methods</h3><p>NSCLC cell lines (A549 and H1299) were cultured in normoxia or hypoxia conditions with or without melittin treatment. The viability of the cells was detected via MTT assay and the proliferation ability was evaluated by EdU assay. QRT-PCR was performed to evaluate GLUT1, LDHA, HK2, VEGF and LATS2 mRNA levels. Glucose transport was assessed by the 2-NBDG uptake assay. The angiogenesis was determined by the tubule formation assay. The protein expressions of GLUT1, LDHA, HK2, VEGF, LATS2, YAP, p-YAP and HIF-1α were detected via western blotting assay. The tumor formation assay was conducted to examine the roles of melittin and LATS2 <em>in vivo</em>.</p></div><div><h3>Results</h3><p>Melittin inhibited hypoxia-induced cell viability, proliferation, glycolysis and angiogenesis as well as suppressed YAP binding to HIF-1α in NSCLC. Melittin inactivated the YAP/HIF-1α pathway via up-regulation of LATS2, ultimately inhibiting cancer progression of NSCLC. Moreover, melittin suppressed tumor growth via up-regulation of LATS2 <em>in vivo</em>.</p></div><div><h3>Conclusion</h3><p>Melittin inactivated the YAP/HIF-1α pathway via up-regulation of LATS2 to contribute to the development of NSCLC. Therefore, melittin is expected to become a potential prognostic drug for the therapy of NSCLC.</p></div>","PeriodicalId":10472,"journal":{"name":"Clinics","volume":"79 ","pages":"Article 100407"},"PeriodicalIF":2.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S180759322400084X/pdfft?md5=3af4cd7e13811d82b575ae2cd2a47a03&pid=1-s2.0-S180759322400084X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Melittin inactivates YAP/HIF-1α pathway via up-regulation of LATS2 to inhibit hypoxia-induced proliferation, glycolysis and angiogenesis in NSCLC\",\"authors\":\"Hao Li\",\"doi\":\"10.1016/j.clinsp.2024.100407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>NSCLC is one of the most common causes of death. The hypoxia microenvironment contributes to cancer progression. The purpose was to explore the effects and mechanism of melittin on NSCLC cells in the hypoxic microenvironment.</p></div><div><h3>Methods</h3><p>NSCLC cell lines (A549 and H1299) were cultured in normoxia or hypoxia conditions with or without melittin treatment. The viability of the cells was detected via MTT assay and the proliferation ability was evaluated by EdU assay. QRT-PCR was performed to evaluate GLUT1, LDHA, HK2, VEGF and LATS2 mRNA levels. Glucose transport was assessed by the 2-NBDG uptake assay. The angiogenesis was determined by the tubule formation assay. The protein expressions of GLUT1, LDHA, HK2, VEGF, LATS2, YAP, p-YAP and HIF-1α were detected via western blotting assay. The tumor formation assay was conducted to examine the roles of melittin and LATS2 <em>in vivo</em>.</p></div><div><h3>Results</h3><p>Melittin inhibited hypoxia-induced cell viability, proliferation, glycolysis and angiogenesis as well as suppressed YAP binding to HIF-1α in NSCLC. Melittin inactivated the YAP/HIF-1α pathway via up-regulation of LATS2, ultimately inhibiting cancer progression of NSCLC. Moreover, melittin suppressed tumor growth via up-regulation of LATS2 <em>in vivo</em>.</p></div><div><h3>Conclusion</h3><p>Melittin inactivated the YAP/HIF-1α pathway via up-regulation of LATS2 to contribute to the development of NSCLC. Therefore, melittin is expected to become a potential prognostic drug for the therapy of NSCLC.</p></div>\",\"PeriodicalId\":10472,\"journal\":{\"name\":\"Clinics\",\"volume\":\"79 \",\"pages\":\"Article 100407\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S180759322400084X/pdfft?md5=3af4cd7e13811d82b575ae2cd2a47a03&pid=1-s2.0-S180759322400084X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S180759322400084X\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S180759322400084X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Melittin inactivates YAP/HIF-1α pathway via up-regulation of LATS2 to inhibit hypoxia-induced proliferation, glycolysis and angiogenesis in NSCLC
Background
NSCLC is one of the most common causes of death. The hypoxia microenvironment contributes to cancer progression. The purpose was to explore the effects and mechanism of melittin on NSCLC cells in the hypoxic microenvironment.
Methods
NSCLC cell lines (A549 and H1299) were cultured in normoxia or hypoxia conditions with or without melittin treatment. The viability of the cells was detected via MTT assay and the proliferation ability was evaluated by EdU assay. QRT-PCR was performed to evaluate GLUT1, LDHA, HK2, VEGF and LATS2 mRNA levels. Glucose transport was assessed by the 2-NBDG uptake assay. The angiogenesis was determined by the tubule formation assay. The protein expressions of GLUT1, LDHA, HK2, VEGF, LATS2, YAP, p-YAP and HIF-1α were detected via western blotting assay. The tumor formation assay was conducted to examine the roles of melittin and LATS2 in vivo.
Results
Melittin inhibited hypoxia-induced cell viability, proliferation, glycolysis and angiogenesis as well as suppressed YAP binding to HIF-1α in NSCLC. Melittin inactivated the YAP/HIF-1α pathway via up-regulation of LATS2, ultimately inhibiting cancer progression of NSCLC. Moreover, melittin suppressed tumor growth via up-regulation of LATS2 in vivo.
Conclusion
Melittin inactivated the YAP/HIF-1α pathway via up-regulation of LATS2 to contribute to the development of NSCLC. Therefore, melittin is expected to become a potential prognostic drug for the therapy of NSCLC.
期刊介绍:
CLINICS is an electronic journal that publishes peer-reviewed articles in continuous flow, of interest to clinicians and researchers in the medical sciences. CLINICS complies with the policies of funding agencies which request or require deposition of the published articles that they fund into publicly available databases. CLINICS supports the position of the International Committee of Medical Journal Editors (ICMJE) on trial registration.